
SUMMANDS OF BOTT-SAMELSON MOTIVES

R. VIRK

1. For my own sake, let me state the question you asked. The notation is as
follows: G is connected reductive, B ⊂ G a Borel, W the Weyl group, and ` : W →
Z≥0 the length function. It’s assumed that a maximal torus in B has been fixed,
so we have simple reflections and the like. For a simple reflection s, I will write
Ps ⊃ B for the associated minimal parabolic.

Let w ∈W, and fix a reduced word

w = s0 · · · sk.

To this reduced word is associated the so-called Bott-Samelson resolution

π : Ps0 ×B Ps1 ×
B · · · ×B Psk /B→ G/B.

By the Decomposition Theorem

π∗Q ≈ ICw
⊕
x∈J

ICx,

where ≈ means modulo shifts, and ICx means the intersection complex on the
Schubert variety associated to x. The question is to

determine J.

2. Ok, I am now going to rephrase the question in the Hecke algebra. To prevent
confusion, let me define the Hecke algebra, etc. - conventions in the literature
differ a lot, this can cause some re-scaling by q, q

1
2 and things of that nature. I

would suggest skipping defining junk section and jumping to the section titled
‘rephrasing the question’, referring back as needed.

The Hecke algebra will be the Z[v, v−1] algebra generated by Tw, w ∈W, and
relations

TxTy = Txy if `(xy) = `(x) + `(y),

(Ts + 1)(Ts − v−2) = 0 for each simple reflection s.

The v2 corresponds to the inverse of the Tate twist (−1) - let’s not worry about the
meaning of ‘half Tate twist’. The Tx correspond to !-pushforwards of the constant
sheaf of the Schubert cell corresponding to x (so no shift here, i.e., these aren’t
pervers). The quadratic relation basically just encodes the cohomology of P1.

In order to work with elements in this algebra that correspond to perverse
sheaves, and to ensure that the (Kazhdan-Lusztig) basis elements that correspond
to intersection complexes being of weight 0, it is convenient to work with the
following elements.

Set
Hx = v`(x)Tx.
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Now we have the bar involution (corresponding to Verdier duality), defined by

v̄ = v−1, H̄x = H−1
x−1 .

Now the standard result is that for each x ∈ W, there exists a self-dual (with
respect to the bar involution) element Cx such that

Cx ∈ Hx + ∑
y<x

vZ[v]Hy.

The Cx are basically the Kazhdan-Lusztig basis (i.e., correspond to intersection
complexes of weight 0).

3. The question rephrased. The original Bott-Samelson question now becomes
the following

Cs0 · · ·Csk = Cw + ∑
x<w

hxCx.

Determine when hx 6= 0. Ok, as Cs1 · · ·Csk is going to be a similar sum of Cys, we
could do this inductively by figuring out what CsCx is, for a simple reflection s
and x arbitrary. An ‘explicit’ formula for this is easy to derive

CsCx =

Csx + ∑y<x,
sy<y

µ(y, x)Cy if sx > x,

(v + v−1)Cx if sx < x.

Here µ(y, x) is defined as follows. Define polynomials hy,x ∈ Z[v] by

Cx = ∑
y

hy,x Hy.

Now
µ(y, x) is the coefficient of v in hy,x.

Essentially (up to scaling by a power of v), the hy,x are Kazhdan-Lusztig polynomi-
als, and µ(y, x) is their ‘leading coefficient’. I have chosen the notation so that my
µ(y, x) coincides with Kazhdan-Lusztig’s µ (even though I am using different con-
ventions for the Hecke algebra, etc.). This µ function is pretty infamous, and will
be the same in the literature on Kazhdan-Lusztig polynomials, regardless of the
conventions being used. I.e., if you see a µ function in a paper on KL-polynomials,
it is highly likely that it is the same µ as here, regardless of conventions, definitions,
etc.

So an inductive version of the question becomes

determine when µ(y, x) 6= 0?

As far as I know, even though a lot of effort has been expended on this question, not
much is known. There seem to be some simple necessary conditions for µ(y, x) 6= 0,
but these are known to not be sufficient. I am pretty sure that, apart from some
limited special cases, no sufficient conditons are known. In fact, given that this µ
function also plays a role in the inductive construction of the KL-basis, any nice
combinatorial rule describing it, or indicating when it is non-zero, would probably
yield combinatorial insight into KL-polynomials.

Essentially all I am saying is that this seems to be a hard problem, and at least
for the moment I give up. All I am going to now do is mention one easy condition
that guarantees the vanishing of µ(y, x), and quickly explain what µ has to do
with cells (another object that is hard to get a combinatorial handle on).
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The condition is simple:

if `(x)− `(y) is even, then µ(y, x) = 0.

As far as the relation with cells goes. Consider the following problem: instead
of asking if ICx occurs as a summand using the Bott-Samelson resolution for a
fixed reduced word for w, one can ask if ICx occurs as a summand using a Bott-
Samelson resolution corresponding to some reduced word for w (so same question
as the original, except don’t fix the reduced word). Translating into the Hecke
algebra, and into the above framework, this leads to the following consideration.

Write x ≤L y if there exist a simple reflection s such that Cy occurs with non-
zero coefficient in the expansion of CsCx in the KL-basis (the Cw). Extend ≤L to
a partial order on W. The equivalence classes corresponding to this order are
precisely what are called the left cells of W.

The Appalachians


	1. 
	2. 
	3. The question rephrased

