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1. Structure theorem for abelian groups

1.1. Theorem. Let G be a finitely generated abelian group. Then

G ' Z⊕n ⊕ Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dmZ,

for some integers m ≥ 0, d1, . . . , dm > 1, with d1|d2, d2|d3, . . . , dm−1|dm.

Proof. A finitely generated abelian group G is tautologically a finitely generated
Z-module. Further, Z is Noetherian. Hence, G is finitely presented. Let Z⊕r f−→
Z⊕s → G → 0 be a presentation of G. We dont distinguish between f and the
matrix representing f (with respect to the usual basis for free modules). Write T
for the Smith normal form of f . Then T also gives a presentation of G (multiplying
by invertible matrices on the left/right of T corresponds to changing bases for Z⊕r,
Z⊕s). Without loss of generality, we may assume that all the diagonal entries of
T are positive and none of them is equal to 1. Let n be the number of zeroes
on the diagonal and let d1, . . . , dm be the non-zero entries on the diagonal with
d1|d2, . . . , dm−1|dm. Then a moment’s thought shows that

G ' Z⊕n ⊕ Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dmZ. �

1.2. Corollary. Let G be a finitely generated abelian group. Then

G ' Z⊕n ⊕ Z/pn1
1 Z⊕ Z/pn2

2 Z⊕ · · · ⊕ Z/pnm
m ,

for some integer n ≥ 0, prime numbers p1, . . . , pm and integers n1, . . . , nm ≥ 1.

Proof. Exercise! �

This finishes the ‘official’ modules part of this course. Once we have covered the
other ‘official’ topics we may (depending on everyone’s interest levels) come back
to modules.

2. Field extensions

2.1. Let F be a field. An extension field (or field extension) of F is a field con-
taining F as a subfield.

2.2. Example. Q ⊂ R ⊂ C. A subfield of C is also called a number field.

2.3. Let K ⊃ F be a field extension of F . Let α ∈ K. Then α is algebraic over F
if it is the root of some non-zero monic polynomial

xn + an−1x
n−1 + · · ·+ a0, with ai ∈ F .

The element α is transcendental over F if it is not algebraic over F . Note that the
notions of algebraic and transcendental depend on the given field F .

2.4. Example. π ∈ R is transcendental over Q.

2.5. Example.
√
−1 ∈ C is algebraic over Q.
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The two possibilities for α can be described in terms of the ring homomorphism

ϕ : F [x] → K, f(x) 7→ f(α).

The element α is transcendental over F if and only if ϕ is injective and algebraic
otherwise. Assume α is algebraic. Since F [x] is a PID, ker(φ) is generated by a
single polynomial f(x) ∈ F [x] which may as well be assumed to be monic. It is the
monic polynomial of lowest degree having α as a root. It is easy to see (exercise!)
that f(x) is irreducible. The polynomial f is called the irreducible polynomial for
α over F . Note that the notion of irreducibility depends on the field F .

2.6. Let α1, . . . , αn ∈ K. Denote by F (α1, . . . , αn) the smallest subfield of K
containing F and α1, . . . , αn. Denote by F [α1, . . . , αn] the sub-ring of K generated
by F , α1, . . . , αn. So F (α1, . . . , αn) is the fraction field of F [α1, . . . , αn].

2.7. Proposition. Let K ⊃ F be a field extension, α ∈ K. Define a ring homo-
morphism ψ : F [x] → F [α], f(x) 7→ f(α).

(i) If α is transcendental, then ψ is an isomorphism.
(ii) If α is algebraic, with f(x) ∈ F [x] its irreducible polynomial over F , then

ψ induces an isomorphism F [x]/f(x) ∼−→ F [α] and F [α] = F (α). In par-
ticular, F [α] is a field.

Proof. (i) is obvious. In (ii), by definition, f(x) generates the kernel of ψ. The
assertion F [α] = F (α) follows from the fact that f(x) is irreducible and hence
generates a maximal ideal in F [x]. �

2.8. Proposition. Let K ⊃ F be a field extension. Let α ∈ K be algebraic over F
with irreducible polynomial f(x). Suppose f(x) has degree n. Then {1, α, α2, . . . , αn−1}
is a basis for F [α] as a F -vector space.

Proof. Certainly {1, α, α2, . . . , αn−1} is a generating set for F [α] over F (all higher
powers of α can be expressed using the given powers using f(α) = 0). It must
be linearly independent since any relation amongst these elements would give a
polynomial g(x) ∈ F [x] of degree strictly lower than n and such that g(α) = 0. �

2.9. A field extension K ⊃ F is called a simple extension if K = F (α) for some
α ∈ K, K is called an algebraic extension if α is algebraic over F , it is called a
transcendental extension otherwise.

2.10. Warning. An extension may be simple without appearing to be. Take F = Q
and K = Q(

√
−1,

√
5). Then it is not hard to show that K = Q(

√
−1 +

√
5).

2.11. Let K ⊃ F and K ′ ⊃ F be field extensions. We say that an isomorphism
f : K ∼−→ K ′ is an F -isomorphism if f restricts to the identity on the subfield F .

2.12. Proposition. Let F (α) and F (β) be simple extensions of F . Assume that
α, β are algebraic over F and that they both have the same irreducible polynomial
over F . Then F (α) is F -isomorphic to F (β).

Proof. Under the assumptions both F (α) and F (β) are F -isomorphic to F [x]/f
where f is the common irreducible polynomial of α, β over F . �

2.13. Warning. The converse to the above result is false. For instance, Q[x]/(x2−2)
and Q[x]/(x2 − 4x+ 2) are Q-isomorphic.
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