
FIELDS: DEGREE OF AN EXTENSION, SOME FUN WITH
FINITE FIELDS.

R. VIRK

1. Degree of a field extension

1.1. Let K ⊃ F be a field extension. Then K is an F -vector space. The degree of
K over F , denoted [K : F ], is the dimension of K as an F -vector space.

1.2. Example. [C : C] = 1.

1.3. Example. [C : R] = 2.

1.4. Example. [C : Q] = ∞.

1.5. The extension K ⊃ F is called a finite extension if [K : F ] is finite. It is called
a quadratic extension if [K : F ] = 2 and a cubic extension if [K : F ] = 3.

1.6. Generalizing the terminology for simple extensions, a field extension K ⊃ F
is said to be algebraic over F if each element α ∈ K is algebraic over F .

1.7. Proposition. Let F (α) be a simple algebraic extension over F . Then [F (α) :
F ] is the degree of the irreducible polynomial of α over F .

Proof. Exercise! �

The following is almost tautological.

1.8. Lemma. A simple extension F (α) ⊃ F is algebraic over F if and only if the
degree [F (α) : F ] is finite.

Proof. Exercise! �

The following easy result is extremely useful.

1.9. Proposition. Let F ⊂ K ⊂ L be fields. Then

[L : F ] = [L : K][K : F ].

Proof. Let {αi}i∈I be a basis for K over F . Let {βj}j∈J be a basis for L over K.
To demonstrate the result it suffices to show that {αiβj}(i,j)∈I×J is a basis for L
over F . Let x ∈ L, then x =

∑
j∈J bjβj for some bj ∈ K. Further, for each j ∈ J ,

bj =
∑

i∈I aijαi for some aij ∈ F . Thus,

x =
∑
j∈J

∑
i∈I

aijαiβj =
∑

(i,j)∈I×J

aijαiβj .

Hence, {αiβj}(i,j)∈I×J generates L over F . All that remains to be seen is that the
αiβj are linearly independent over F . Suppose∑

(i,j)∈I×J

cijαiβj = 0

for some cij ∈ F . Then∑
(i,j)∈I×J

cijαiβj =
∑
j∈J

(∑
i∈I

cijαi

)
βj = 0.
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As {βj}j∈J is a basis for L over K, we must have that
∑

i∈I cijαi = 0 for all j ∈ J .
This forces all the cij to be 0, since {αi}i∈I is a basis for K over F . �

1.10. Proposition. Let K ⊃ F be a field extension. Let L ⊆ K denote the subset
of all elements in K that are algebraic over F . Then L is a subfield of K.

Proof. We need to show that if α, β ∈ K are algebraic over F , then α + β, αβ,−α
and α−1 are also algebraic over F . As β is algebraic over F , it is also algebraic over
F (α). By Lemma 1.8, this implies that [F (α, β) : F (α)] is finite. As α is algebraic
over F , Lemma 1.8 also implies that [F (α) : F ] is finite. Now Prop. 1.9 gives that

[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ]

is finite. This implies that [F (α + β) : F ] and [F (αβ) : F ] are finite. So by Lemma
1.8, α+β and αβ are algebraic over F . It is obvious that F (α) = F (−α) = F (α−1).
In particular,

[F (α) : F ] = [F (−α) : F ] = [F (α−1) : F ].
Applying Lemma 1.8, we get that α and α−1 are algebraic over F . �

1.11. Proposition. Let F ⊂ K ⊂ L be fields. If K is algebraic over F and L is
algebraic over K, then L is algebraic over F .

Proof. Exercise! �

2. Counting and finite fields

2.1. I should have probably said this a long time ago, but a field will always
mean a field with 1 6= 0. If we allowed it, the field with 1 = 0 would be a cheeky
counterexample to many of the results of this section.

2.2. A field F is called finite if the number of elements in F , denoted |F |, is finite.
The number |F | is often called the order of F .

2.3. Example. Z/pZ for a prime number p.

2.4. For a prime number p, I will write Fp for the field Z/pZ.

2.5. Example. F3[x]/(x2 + 1) is a field of order 9.

2.6. Example. Z[i]/3 is a field of order 9. This isn’t really a new example: Z[i]/3 is
isomorphic to F3[x]/(x2 + 1).

2.7. Let F be a field. The characteristic of F , denoted char(F ), is the smallest
positive integer n > 0 such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such integer exists, then we say that F is of chracteristic 0. This might seem
like a funny convention, but it is (somewhat) justified by the following convenient
notation.

2.8. Let n ∈ Z. If n is positive, then we also write n for the element

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

in F . If n is negative, then we also write n for the element

−(1 + 1 + · · ·+ 1︸ ︷︷ ︸
−n times

)

in F .
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2.9. Example. char(Q) = char(R) = char(C) = 0.

2.10. Example. char(Fp) = p.

2.11. Proposition. If F is a field of non-zero characteristic, then char(F ) must be
a prime number.

Proof. Suppose char(F ) = mn for positive integers m and n. Then mn = 0. This
implies, without loss of generality, that m = 0 in F . So char(F ) = m and n = 1,
since the characteristic is the smallest positive integer that is zero in F . �

2.12. Proposition. If F is a finite field, then char(F ) 6= 0.

Proof. Set n = |F |. Then the elements 0, 1, . . . , n cannot all be distinct in F . That
is, r − s = 0 in F , for some distinct positive integers r, s. �

2.13. Proposition. If V is a finite dimensional Fp-vector space, then V contains
pdim (V ) elements.

Proof. Let {e1, . . . , en} be a basis for V . Let v ∈ V , then

v = a1e1 + · · ·+ anen

for some ai ∈ Fp determined uniquely by v. There are only pn possibilities. �

2.14. Let F be a finite field. Then char(F ) must be a prime number, say p. It
is easy to see (exercise!) that the subset {0, 1, . . . , p − 1} is a sub-field of F . This
sub-field is isomorphic to Fp. From this point on I will just say that Fp is a sub-field
of F (pedantically, Fp only contains an isomorphic copy of Fp, but in this situation
nothing is lost by pretending that isomorphic objects are equal). Regardless, the
field F is an Fp-vector space. In particular, |F | is some power of p.

2.15. The main points of the discussion above can be summarized as follows: let
K be a field of characteristic p 6= 0. Then

(i) p must be a prime number;
(ii) Fp is a subfield of K;
(iii) K is a finite field if and only if [K : Fp] is finite;
(iv) if K is a finite field, then |K| = p[K:Fp].
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