FIELDS: DEGREE OF AN EXTENSION, SOME FUN WITH
FINITE FIELDS.

R. VIRK

1. DEGREE OF A FIELD EXTENSION

1.1. Let K D F be a field extension. Then K is an F-vector space. The degree of
K over F, denoted [K : F], is the dimension of K as an F-vector space.

1.2. Example. [C: C] = 1.
1.3. Ezample. [C: R] = 2.
1.4. Example. [C : Q] = oc.

1.5.  The extension K D F is called a finite extension if [K : F| is finite. It is called
a quadratic extension if [K : F] = 2 and a cubic extension if [K : F] = 3.

1.6. Generalizing the terminology for simple extensions, a field extension K O F
is said to be algebraic over F' if each element o € K is algebraic over F.

1.7. Proposition. Let F(a) be a simple algebraic extension over F. Then [F(a) :
F) is the degree of the irreducible polynomial of o over F'.

Proof. Exercise! O
The following is almost tautological.

1.8. Lemma. A simple extension F(«a) D F is algebraic over F if and only if the
degree [F(a) : F] is finite.

Proof. Exercise! O
The following easy result is extremely useful.
1.9. Proposition. Let FF C K C L be fields. Then
[L:F)=[L:K]|[K:F]
Proof. Let {a;}icr be a basis for K over F'. Let {f3;},cs be a basis for L over K.
To demonstrate the result it suffices to show that {a;f3;}( jyerx s is a basis for L

over F. Let x € L, then = = ZjEJ b;3; for some b; € K. Further, for each j € J,
bj = > ;e aijoy for some a;; € F. Thus,
r= Zzazjazﬂj = Z aijai B
JeJ el (i,5)€IxJ

Hence, {aiﬂj}(i,j)eli generates L over F'. All that remains to be seen is that the
«;3; are linearly independent over F. Suppose

> cijaifi =0
(i,7)€IXJ

for some ¢;; € F'. Then

Z cijaifly = Z (Z Cijai> B = 0.
(i,§)€IxJ jeJ \iel
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As {f3;}je is a basis for L over K, we must have that ), ; c;ja; = 0 forall j € J.
This forces all the ¢;; to be 0, since {e;}ier is a basis for K over F. O

1.10. Proposition. Let K D F be a field extension. Let L C K denote the subset
of all elements in K that are algebraic over F. Then L is a subfield of K.

Proof. We need to show that if o, 3 € K are algebraic over F, then o + 3, a3, —«
and o~ ! are also algebraic over F. As 3 is algebraic over F, it is also algebraic over

F(«). By Lemma this implies that [F(a, 8) : F(«)] is finite. As « is algebraic
over F', Lemma also implies that [F(«) : F] is finite. Now Prop. gives that

[F(a, ) : F] = [F(o, ) : F()][F() : F]
is finite. This implies that [F(a+ 5) : F] and [F(af) : F| are finite. So by Lemma
a+ 3 and af3 are algebraic over F'. It is obvious that F(a) = F(—a) = F(a™!).
In particular,

[F(a): F]=[F(—a): F]=[F(a™"): F].
Applying Lemma we get that o and a~! are algebraic over F. O

1.11. Proposition. Let F C K C L be fields. If K is algebraic over F and L is
algebraic over K, then L is algebraic over F.

Proof. Exercise! O

2. COUNTING AND FINITE FIELDS

2.1. I should have probably said this a long time ago, but a field will always
mean a field with 1 # 0. If we allowed it, the field with 1 = 0 would be a cheeky
counterexample to many of the results of this section.

2.2. A field F is called finite if the number of elements in F', denoted |F|, is finite.
The number |F| is often called the order of F.

2.3. Example. Z/pZ for a prime number p.
2.4. For a prime number p, I will write F,, for the field Z/pZ.
2.5. Ezample. F3[z]/(z% + 1) is a field of order 9.

2.6. Example. Z[i]/3 is a field of order 9. This isn’t really a new example: Z[i]/3 is
isomorphic to Fa[z]/(x? + 1).

2.7. Let F be a field. The characteristic of F, denoted char(F), is the smallest
positive integer n > 0 such that

1+1+4--+1=0.
—_——

n times

If no such integer exists, then we say that F' is of chracteristic 0. This might seem
like a funny convention, but it is (somewhat) justified by the following convenient
notation.

2.8. Let n € Z. If n is positive, then we also write n for the element
I+1+-+1
S

n times
in F. If n is negative, then we also write n for the element

~(I4+1+-+1)
—_——

—n times
in F.
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2.9. Ezample. char(Q) = char(R) = char(C) = 0.
2.10. Ezample. char(F,) = p.

2.11. Proposition. If F is a field of non-zero characteristic, then char(F') must be
a prime number.

Proof. Suppose char(F) = mn for positive integers m and n. Then mn = 0. This
implies, without loss of generality, that m = 0 in F. So char(F) = m and n = 1,
since the characteristic is the smallest positive integer that is zero in F'. O

2.12. Proposition. If F is a finite field, then char(F) # 0.

Proof. Set n = |F|. Then the elements 0, 1,...,n cannot all be distinct in F'. That
is, r —s =0 in F, for some distinct positive integers 7, s. O

2.13. Proposition. If V is a finite dimensional F,-vector space, then V contains
pdim (V) elements.

Proof. Let {e1,...,e,} be a basis for V. Let v € V, then
v=aie; +- -+ apen
for some a; € F;, determined uniquely by v. There are only p™ possibilities. O

2.14. Let F be a finite field. Then char(F) must be a prime number, say p. It
is easy to see (exercise!) that the subset {0,1,...,p — 1} is a sub-field of F. This
sub-field is isomorphic to F,. From this point on I will just say that F,, is a sub-field
of F' (pedantically, F,, only contains an isomorphic copy of F,,, but in this situation
nothing is lost by pretending that isomorphic objects are equal). Regardless, the
field F' is an Fp-vector space. In particular, |F'| is some power of p.

2.15. The main points of the discussion above can be summarized as follows: let
K be a field of characteristic p # 0. Then

(i) p must be a prime number;

(ii) Fp is a subfield of K;

(ii) K is a finite field if and only if [K : F,)] is finite;

(iv) if K is a finite field, then |K| = pl/Fsl,
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