
Algebraic Number Theory Homework 1 Rahbar Virk

Solution 1.

(a) Note that, if x ∈ Z then x2 ≡ 0 or 1 mod 4. Thus, checking the possibilities we
see that if a, b ∈ Z then a2 + b2 ≡ 0 or 1 or 2 mod 4. Furthermore if p = a2 + b2

where p is an odd prime in Z then we can eliminate the possibilities 0 and 2 (as
otherwise p would be even). Thus, we have that if p = a2 + b2, for some a, b ∈ Z
and p is an odd prime, then p ≡ a2 + b2 ≡ 1 mod 4 as required.

(b) For r = a + bi ∈ Q[i], define N(r) = a2 + b2. Now note that if α = a + bi and
β = c + di; a, b, c, d ∈ Q then

N(αβ) = N((ac− bd) + (ad + bc)i)

= (ac− bd)2 + (ad + bc)2

= (ac)2 + (bd)2 − 2abcd + (ad)2 + (bc)2 + 2abcd

= a2(c2 + d2) + b2(c2 + d2)

= (a2 + b2)(c2 + d2)

= N(α)N(β)

Thus, N is multiplicative. (Also note that N(r) ≥ 0, for all r ∈ Q[i] and that
N(r) = 0 iff r = 0).
Let α, β ∈ Z[i], α, β 6= 0. Since β 6= 0, α

β
is in Q[i], so there are rational numbers x

and y (obtained by ”rationalizing the denominator”) such that

α = (x + yi)β

Choose integers a, b closest to x and y respectively. More precisely choose integers
a and b such that |x− a| ≤ 1

2
and |y − b| ≤ 1

2
. Then

α = (a + bi)β + [(x− a) + (y − b)i]β

so if we take γ = a + bi and δ = [(x− a) + (y − b)i]β, we have

α = γβ + δ

Furthermore, as a, b ∈ Z, this implies γ ∈ Z[i] and

δ = [(x− a) + (y − b)i]β

= (x + yi)β − (a + bi)β

= α− (a + bi)β

Thus, as α, β ∈ Z[i] and a, b ∈ Z we have that δ ∈ Z[i].
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It now remains to show that N(δ) < N(β). We have that

N(δ) = N([(x− a) + (y − b)i]β)

= N((x− a) + (y − b)i)N(β)

= [(x− a)2 + (y − b)2]N(β)

≤

[(
1

2

)2

+

(
1

2

)2
]

N(β)

=
1

2
N(β)

< N(β)

as required. Thus, Z[i] is a Euclidean domain and hence a PID which further implies
that it is a UFD.

(c) Suppose p is a prime such that p ≡ 1 mod 4. By the quadratic reciprocity law
then ∃a ∈ Z such that

a2 ≡ −1 mod p

⇒ a2 + 1 ≡ 0 mod p

Thus, p|a2 + 1 in Z. This implies that p|(a + i)(a− i) in Z[i]. If p were a prime in
Z[i] this would imply that p divides a+ i or a− i in Z[i] which is clearly absurd (as
p - ±1). Hence, if p ≡ 1 mod 4 then p is not a prime in Z[i], as required.

(d) Let p be as stated in the problem. By part (b) Z[i] is a UFD, hence if we have a
non-unit non-zero element in Z[i] that is not prime then it is reducible. Further
note that u ∈ Z[i] is a unit iff N(u) = 1, where N is as defined in part (b) (this
follows from the multiplicative nature of N and the fact that N(1) = 1). Now by
part (c) p is not prime and as N(p) = p2 it is also a non-zero non-unit in Z[i]. Thus,
it is reducible in Z[i] i.e there exist a, b, c, d ∈ Z such that

p = (a + bi)(c + di)

where, a+ bi and c+ di are not units and consequently a2 + b2 6= 1 and c2 + d2 6= 1.
Applying the map N we obtain that

p2 = (a2 + b2)(c2 + d2)

Now using unique factorization in Z we have that p = a2 + b2 as required.

Solution 2.
We will proceed analogously to solution 1. We see that if x ∈ Z then x2 ≡ 0 or 1 or 4

mod 8. Thus checking the possibilities we see that if a, b ∈ Z then a2 − 2b2 ≡ 0 or ±
1 or − 2 or 4 mod 8. Furthermore if p = a2 − 2b2 where p is an odd prime in Z then
we can eliminate the possibilities 0, −2 and 4 (as otherwise p would be even). Thus, we
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have that if p = a2− 2b2, for some a, b ∈ Z and p is an odd prime, then p ≡ a2 + b2 ≡ ±1
mod 8.

For r = a + b
√

2 ∈ Q[
√

2], define N(r) = |a2 − 2b2|. Now note that if α = a + b
√

2
and β = c + d

√
2, a, b, c, d ∈ Q then

N(αβ) = N((ac + 2bd) + (ad + bc)
√

2)

= |(ac + 2bd)2 − 2(ad + bc)2|
= |(ac)2 + 4(bd)2 + 4abcd− 2(ad)2 − 2(bc)2 − 4abcd|
= |a2(c2 − 2d2)− 2b2(c2 − 2d2)|
= |(a2 − 2b2)||(c2 − 2d2)|
= N(α)N(β)

Thus, N is multiplicative. Also note that N(r) ≥ 0, r ∈ Q[
√

2] and that N(r) = 0 iff
r = 0 (this is easiest seen by noting that N(a + b

√
2) = |(a + b

√
2)(a − b

√
2)| and then

noting that we are in an integral domain).
Let α, β ∈ Z[

√
2], α, β 6= 0. Since β 6= 0, α

β
= x + y

√
2 for some x, y ∈ Q (obtained by

”rationalizing the denominator”).
Choose integers a, b closest to x and y repsectively, i.e such that |x − a| ≤ 1

2
and

|y − b| ≤ 1
2
. Then

α = (a + b
√

2)β + [(x− a) + (y − b)
√

2]β

so if we take γ = a + b
√

2 and δ = [(x− a) + (y − b)
√

2]β, we have

α = γβ + δ

Furthermore, as a, b ∈ Z, this implies γ ∈ Z[
√

2] and

δ = [(x− a) + (y − b)
√

2]β

= (x + y
√

2)β − (a + b
√

2)β

= α− (a + b
√

2)β

Thus, as α, β ∈ Z[
√

2] and a, b ∈ Z we have that δ ∈ Z[
√

2].
It remains to show that N(δ) < N(β). We have that

N(δ) = N([(x− a) + (y − b)
√

2]β)

= N([(x− a) + (y − b)
√

2)N(β)

= |(x− a)2 − 2(y − b)2|N(β)

≤

∣∣∣∣∣
(

1

2

)2

+ 2

(
1

2

)2
∣∣∣∣∣ N(β)

=
3

4
N(β)

< N(β)

as required. Thus, Z[
√

2] is a Euclidean domain and hence a PID which further implies
that it is a UFD.
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Suppose p is a prime such that p ≡ ±1 mod 8. By the quadratic reciprocity law then
∃a ∈ Z such that

a2 ≡ 2 mod p

⇒ a2 − 2 ≡ 0 mod p

Thus, p|a2− 2 in Z. This implies that p|(a +
√

2)(a−
√

2) in Z[
√

2]. If p were a prime in
Z[
√

2] this would imply that p divides a +
√

2 or a−
√

2 in Z[
√

2] which is clearly absurd
(as p - ±1). Hence, if p ≡ ±1 mod 8 then p is not a prime in Z[

√
2].

Let p be as just stated. We have shown that Z[
√

2] is a UFD, hence if we have a
non-unit, non-zero element in Z[

√
2] that is not prime then it is reducible. Further note

that u ∈ Z[i] is a unit iff N(u) = 1, (this again follows by the multiplicative nature of N
and the fact that N(1) = 1), where N is as defined earlier. Hence, we have that p is not
prime and as N(p) = p2 it is also a non-zero, non-unit in Z[

√
2]. Thus, it is reducible in

Z[
√

2] i.e there exist a, b, c, d ∈ Z such that

p = (a + b
√

2)(c + d
√

2)

where a + b
√

2 and c + d
√

2 are not units. Applying the map N we obtain that

p2 = |(a2 − 2b2)||(c2 − 2d2)|

As a+ b
√

2 and c+d
√

2 are not units, a2− 2b2 6= ±1 and c2− 2d2 6= ±1. Thus by unique
factorization in Z we have that p = ±(a2 − 2b2) as required. If p = −(a2 − 2b2) then

(a + 2b)2 − 2(a + b)2 = a2 + 4ab + 4b2 − 2a2 − 2b2 − 4ab

= −a2 + 2b2

= p

Thus we have shown that if p is an odd prime in Z then, p ≡ ±1 mod 8 iff p = x2 − 2y2

for some x, y ∈ Z. (Note that 2 = (2)2−2(1)2 and is thus also representable in this way).

For the second half of the problem, note that if 7 = a2 − 2b2 then

(3a + 4b)2 − 2(2a + 3b)2 = 9a2 + 16b2 + 24ab− 8a2 − 18b2 − 24ab

= a2 − 2b2

= 7

This allows us to define an infinite family of representations {ai − 2b2
i }i∈N for 7 given by

a1 = 3, b1 = 1, ai+1 = (3ai +4bi) and bi+1 = (2ai +3bi), i ∈ N. Note that if ai, bi > 0 then
ai+1 > ai and bi+1 > bi. Given our particular choice of a1 and b1 this then clearly shows
that {ai}i∈N and {bi}i∈N form strictly increasing sequences, hence giving us an infinite
family.

Solution 3.
We claim that 7 is a prime as required in the problem. First note that

(7)(2) = (3 +
√
−5)(3−

√
−5)
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Thus, 7|(3 +
√
−5)(3 −

√
−5), but 7 - (3 ±

√
−5) (as otherwise ∃x, y ∈ Z such that

7(x + y
√
−5) = 3±

√
−5 which would imply that 7|3 in Z, which is absurd). Now to see

that 7 cannot be represented as a2 + 5b2 notice that if it could be then

7 ≡ a2 + 5b2 mod 5

⇒ 2 ≡ a2 mod 5

which is not possible as x2 ≡ 0 or ± 1 mod 5 for x ∈ Z
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