Algebraic Number Theory

Solution 1.

- (a) Note that, if $x \in \mathbb{Z}$ then $x^2 \equiv 0$ or 1 mod 4. Thus, checking the possibilities we see that if $a, b \in \mathbb{Z}$ then $a^2 + b^2 \equiv 0$ or 1 or 2 mod 4. Furthermore if $p = a^2 + b^2$ where p is an odd prime in \mathbb{Z} then we can eliminate the possibilities 0 and 2 (as otherwise p would be even). Thus, we have that if $p = a^2 + b^2$, for some $a, b \in \mathbb{Z}$ and p is an odd prime, then $p \equiv a^2 + b^2 \equiv 1 \mod 4$ as required.
- (b) For $r = a + bi \in \mathbb{Q}[i]$, define $N(r) = a^2 + b^2$. Now note that if $\alpha = a + bi$ and $\beta = c + di$; $a, b, c, d \in \mathbb{Q}$ then

$$N(\alpha\beta) = N((ac - bd) + (ad + bc)i)$$

= $(ac - bd)^2 + (ad + bc)^2$
= $(ac)^2 + (bd)^2 - 2abcd + (ad)^2 + (bc)^2 + 2abcd$
= $a^2(c^2 + d^2) + b^2(c^2 + d^2)$
= $(a^2 + b^2)(c^2 + d^2)$
= $N(\alpha)N(\beta)$

Thus, N is multiplicative. (Also note that $N(r) \ge 0$, for all $r \in \mathbb{Q}[i]$ and that N(r) = 0 iff r = 0).

Let $\alpha, \beta \in \mathbb{Z}[i], \alpha, \beta \neq 0$. Since $\beta \neq 0, \frac{\alpha}{\beta}$ is in $\mathbb{Q}[i]$, so there are rational numbers x and y (obtained by "rationalizing the denominator") such that

$$\alpha = (x + yi)\beta$$

Choose integers a, b closest to x and y respectively. More precisely choose integers a and b such that $|x - a| \leq \frac{1}{2}$ and $|y - b| \leq \frac{1}{2}$. Then

$$\alpha = (a+bi)\beta + [(x-a) + (y-b)i]\beta$$

so if we take $\gamma = a + bi$ and $\delta = [(x - a) + (y - b)i]\beta$, we have

 $\alpha = \gamma\beta + \delta$

Furthermore, as $a, b \in \mathbb{Z}$, this implies $\gamma \in \mathbb{Z}[i]$ and

$$\delta = [(x-a) + (y-b)i]\beta$$

= $(x+yi)\beta - (a+bi)\beta$
= $\alpha - (a+bi)\beta$

Thus, as $\alpha, \beta \in \mathbb{Z}[i]$ and $a, b \in \mathbb{Z}$ we have that $\delta \in \mathbb{Z}[i]$.

It now remains to show that $N(\delta) < N(\beta)$. We have that

$$N(\delta) = N([(x-a) + (y-b)i]\beta)$$

= $N((x-a) + (y-b)i)N(\beta)$
= $[(x-a)^2 + (y-b)^2]N(\beta)$
 $\leq \left[\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right]N(\beta)$
= $\frac{1}{2}N(\beta)$
 $< N(\beta)$

as required. Thus, $\mathbb{Z}[i]$ is a Euclidean domain and hence a PID which further implies that it is a UFD.

(c) Suppose p is a prime such that $p \equiv 1 \mod 4$. By the quadratic reciprocity law then $\exists a \in \mathbb{Z}$ such that

$$a^2 \equiv -1 \mod p$$

$$\Rightarrow a^2 + 1 \equiv 0 \mod p$$

Thus, $p|a^2 + 1$ in \mathbb{Z} . This implies that p|(a+i)(a-i) in $\mathbb{Z}[i]$. If p were a prime in $\mathbb{Z}[i]$ this would imply that p divides a+i or a-i in $\mathbb{Z}[i]$ which is clearly absurd (as $p \nmid \pm 1$). Hence, if $p \equiv 1 \mod 4$ then p is not a prime in $\mathbb{Z}[i]$, as required.

(d) Let p be as stated in the problem. By part (b) $\mathbb{Z}[i]$ is a UFD, hence if we have a non-unit non-zero element in $\mathbb{Z}[i]$ that is not prime then it is reducible. Further note that $u \in \mathbb{Z}[i]$ is a unit iff N(u) = 1, where N is as defined in part (b) (this follows from the multiplicative nature of N and the fact that N(1) = 1). Now by part (c) p is not prime and as $N(p) = p^2$ it is also a non-zero non-unit in $\mathbb{Z}[i]$. Thus, it is reducible in $\mathbb{Z}[i]$ i.e there exist $a, b, c, d \in \mathbb{Z}$ such that

$$p = (a+bi)(c+di)$$

where, a + bi and c + di are not units and consequently $a^2 + b^2 \neq 1$ and $c^2 + d^2 \neq 1$. Applying the map N we obtain that

$$p^2 = (a^2 + b^2)(c^2 + d^2)$$

Now using unique factorization in \mathbb{Z} we have that $p = a^2 + b^2$ as required.

Solution 2.

We will proceed analogously to solution 1. We see that if $x \in \mathbb{Z}$ then $x^2 \equiv 0$ or 1 or 4 mod 8. Thus checking the possibilities we see that if $a, b \in \mathbb{Z}$ then $a^2 - 2b^2 \equiv 0$ or ± 1 or -2 or $4 \mod 8$. Furthermore if $p = a^2 - 2b^2$ where p is an odd prime in \mathbb{Z} then we can eliminate the possibilities 0, -2 and 4 (as otherwise p would be even). Thus, we

have that if $p = a^2 - 2b^2$, for some $a, b \in \mathbb{Z}$ and p is an odd prime, then $p \equiv a^2 + b^2 \equiv \pm 1 \mod 8$.

For $r = a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$, define $N(r) = |a^2 - 2b^2|$. Now note that if $\alpha = a + b\sqrt{2}$ and $\beta = c + d\sqrt{2}$, $a, b, c, d \in \mathbb{Q}$ then

$$N(\alpha\beta) = N((ac+2bd) + (ad+bc)\sqrt{2})$$

= $|(ac+2bd)^2 - 2(ad+bc)^2|$
= $|(ac)^2 + 4(bd)^2 + 4abcd - 2(ad)^2 - 2(bc)^2 - 4abcd|$
= $|a^2(c^2 - 2d^2) - 2b^2(c^2 - 2d^2)|$
= $|(a^2 - 2b^2)||(c^2 - 2d^2)|$
= $N(\alpha)N(\beta)$

Thus, N is multiplicative. Also note that $N(r) \ge 0$, $r \in \mathbb{Q}[\sqrt{2}]$ and that N(r) = 0 iff r = 0 (this is easiest seen by noting that $N(a + b\sqrt{2}) = |(a + b\sqrt{2})(a - b\sqrt{2})|$ and then noting that we are in an integral domain).

Let $\alpha, \beta \in \mathbb{Z}[\sqrt{2}], \alpha, \beta \neq 0$. Since $\beta \neq 0$, $\frac{\alpha}{\beta} = x + y\sqrt{2}$ for some $x, y \in \mathbb{Q}$ (obtained by "rationalizing the denominator").

Choose integers a, b closest to x and y represented by i.e such that $|x - a| \leq \frac{1}{2}$ and $|y - b| \leq \frac{1}{2}$. Then

$$\alpha = (a + b\sqrt{2})\beta + [(x - a) + (y - b)\sqrt{2}]\beta$$

so if we take $\gamma = a + b\sqrt{2}$ and $\delta = [(x - a) + (y - b)\sqrt{2}]\beta$, we have

$$\alpha = \gamma\beta + \delta$$

Furthermore, as $a, b \in \mathbb{Z}$, this implies $\gamma \in \mathbb{Z}[\sqrt{2}]$ and

$$\delta = [(x-a) + (y-b)\sqrt{2}]\beta$$

= $(x+y\sqrt{2})\beta - (a+b\sqrt{2})\beta$
= $\alpha - (a+b\sqrt{2})\beta$

Thus, as $\alpha, \beta \in \mathbb{Z}[\sqrt{2}]$ and $a, b \in \mathbb{Z}$ we have that $\delta \in \mathbb{Z}[\sqrt{2}]$. It remains to show that $N(\delta) < N(\beta)$. We have that

$$N(\delta) = N([(x - a) + (y - b)\sqrt{2}]\beta)$$

= $N([(x - a) + (y - b)\sqrt{2}]N(\beta)$
= $|(x - a)^2 - 2(y - b)^2|N(\beta)$
 $\leq \left| \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)^2 \right| N(\beta)$
= $\frac{3}{4}N(\beta)$
 $< N(\beta)$

as required. Thus, $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain and hence a PID which further implies that it is a UFD.

Suppose p is a prime such that $p \equiv \pm 1 \mod 8$. By the quadratic reciprocity law then $\exists a \in \mathbb{Z}$ such that

$$a^2 \equiv 2 \mod p$$

 $\Rightarrow a^2 - 2 \equiv 0 \mod p$

Thus, $p|a^2 - 2$ in \mathbb{Z} . This implies that $p|(a + \sqrt{2})(a - \sqrt{2})$ in $\mathbb{Z}[\sqrt{2}]$. If p were a prime in $\mathbb{Z}[\sqrt{2}]$ this would imply that p divides $a + \sqrt{2}$ or $a - \sqrt{2}$ in $\mathbb{Z}[\sqrt{2}]$ which is clearly absurd (as $p \nmid \pm 1$). Hence, if $p \equiv \pm 1 \mod 8$ then p is not a prime in $\mathbb{Z}[\sqrt{2}]$.

Let p be as just stated. We have shown that $\mathbb{Z}[\sqrt{2}]$ is a UFD, hence if we have a non-unit, non-zero element in $\mathbb{Z}[\sqrt{2}]$ that is not prime then it is reducible. Further note that $u \in \mathbb{Z}[i]$ is a unit iff N(u) = 1, (this again follows by the multiplicative nature of Nand the fact that N(1) = 1), where N is as defined earlier. Hence, we have that p is not prime and as $N(p) = p^2$ it is also a non-zero, non-unit in $\mathbb{Z}[\sqrt{2}]$. Thus, it is reducible in $\mathbb{Z}[\sqrt{2}]$ i.e there exist $a, b, c, d \in \mathbb{Z}$ such that

$$p = (a + b\sqrt{2})(c + d\sqrt{2})$$

where $a + b\sqrt{2}$ and $c + d\sqrt{2}$ are not units. Applying the map N we obtain that

$$p^{2} = |(a^{2} - 2b^{2})||(c^{2} - 2d^{2})|$$

As $a + b\sqrt{2}$ and $c + d\sqrt{2}$ are not units, $a^2 - 2b^2 \neq \pm 1$ and $c^2 - 2d^2 \neq \pm 1$. Thus by unique factorization in \mathbb{Z} we have that $p = \pm (a^2 - 2b^2)$ as required. If $p = -(a^2 - 2b^2)$ then

$$(a+2b)^{2} - 2(a+b)^{2} = a^{2} + 4ab + 4b^{2} - 2a^{2} - 2b^{2} - 4ab$$
$$= -a^{2} + 2b^{2}$$
$$= p$$

Thus we have shown that if p is an odd prime in \mathbb{Z} then, $p \equiv \pm 1 \mod 8$ iff $p = x^2 - 2y^2$ for some $x, y \in \mathbb{Z}$. (Note that $2 = (2)^2 - 2(1)^2$ and is thus also representable in this way).

For the second half of the problem, note that if $7 = a^2 - 2b^2$ then

$$(3a+4b)^2 - 2(2a+3b)^2 = 9a^2 + 16b^2 + 24ab - 8a^2 - 18b^2 - 24ab$$
$$= a^2 - 2b^2$$
$$= 7$$

This allows us to define an infinite family of representations $\{a_i - 2b_i^2\}_{i \in \mathbb{N}}$ for 7 given by $a_1 = 3, b_1 = 1, a_{i+1} = (3a_i + 4b_i)$ and $b_{i+1} = (2a_i + 3b_i), i \in \mathbb{N}$. Note that if $a_i, b_i > 0$ then $a_{i+1} > a_i$ and $b_{i+1} > b_i$. Given our particular choice of a_1 and b_1 this then clearly shows that $\{a_i\}_{i \in \mathbb{N}}$ and $\{b_i\}_{i \in \mathbb{N}}$ form strictly increasing sequences, hence giving us an infinite family.

Solution 3.

We claim that 7 is a prime as required in the problem. First note that

(

$$7)(2) = (3 + \sqrt{-5})(3 - \sqrt{-5})$$

Thus, $7|(3 + \sqrt{-5})(3 - \sqrt{-5})$, but $7 \nmid (3 \pm \sqrt{-5})$ (as otherwise $\exists x, y \in \mathbb{Z}$ such that $7(x + y\sqrt{-5}) = 3 \pm \sqrt{-5}$ which would imply that 7|3 in \mathbb{Z} , which is absurd). Now to see that 7 cannot be represented as $a^2 + 5b^2$ notice that if it could be then

$$7 \equiv a^2 + 5b^2 \mod 5$$
$$\Rightarrow 2 \equiv a^2 \mod 5$$

which is not possible as $x^2 \equiv 0$ or $\pm 1 \mod 5$ for $x \in \mathbb{Z}$