
Algebraic Number Theory Homework 7 Rahbar Virk

Solution 1.

(a) K = Q(
√
−163), as −163 ≡ 1 mod 4, OK = Z[1+

√
−163
2

] and |∆K | = |−163| = 163.

So the Minkowski bound is BK ≤ 2!
22

4
π

√
163 < 9. Thus our representative ideals

may have norms 1, 2, 3, 4, 5, 6, 7, 8. So we must factorize the primes 2, 3, 5, 7. Now
the minimal polynomial for 1+

√
−163
2

is x2 − x + 41, which is irreducible mod 2,3,5
and 7. Thus, (2), (3), (5), (7) are prime ideals in OK and the class number of OK is
1

(b) K = Q(
√
−10), as −10 6≡ 1 mod 4, OK = Z[

√
−10] and |∆K | = | − (4).(10)| = 40.

So the Minkowski bound is BK ≤ 2!
22

4
π

√
40 < 5. Thus our representative ideals

may have norms 1, 2, 3, 4. So we must factorize the primes 2, 3. Now the minimal
polynomial of

√
−10 is x2 + 10 and x2 + 10 = x.x mod 2 and x2 + 10 is irreducible

mod 3. Thus (2) = (2,
√
−10)2 and (3) is prime. Note that (2,

√
−10) cannot be

principal as that would imply the existence of a non-unit, non-zero element with
norm that divided N((2,

√
−10)) = 2 but this is clearly not possible as for a non-

unit, non-zero element a + b
√
−10 in OK , N(a + b

√
−10) = a2 + 10b2 > 2. Thus,

the class number of OK must be 2.

(c) K = Q(
√

14) as 14 6≡ 1 mod 4, OK = Z[
√

14] and |∆K | = |(4).(14)| = 56. So the
Minkowski bound is BK ≤ 2!

22

√
56 < 4. Thus, our representative ideals may have

norms 1, 2, 3. So we must factorize the primes 2, 3. Now the minimal polynomial
of
√

14 is x2 − 14 and x2 − 14 = x.x mod 2 and x2 − 14 is irreducible mod 3. So
(2) = (2,

√
14)2 = (4 +

√
14)2 (as (4 +

√
14)(4−

√
14) = 2 so (2,

√
14) ⊆ (4 +

√
14)

and clearly (4 +
√

14) ⊆ (2,
√

14)) and (3) is prime. Thus, the class number of OK

must be 1.

Solution 2.

Let K = Q
√
−23, as −23 ≡ 1 mod 4, so OK = Z[γ], where γ = 1+

√
−23

2
; and

|∆K | = | − 23| = 23. So the Minkowski bound is BK ≤ 2!
22

4
π

√
23 < 4. Thus,

our representative ideals may have norms 1, 2, 3. So we must factorize the primes 2, 3.
Now the minimal polynomial of γ is x2 − x + 6 and x2 − x + 6 = x(x + 1) mod 2 and
x2−x+6 = x(x−1) mod 3. So, if we set p = (2, γ), q = (2, γ+1), g = (3, γ), h = (3, γ−1)
then (2) = pq and (3) = gh. Note that p can’t be principal as that would imply the
existence of a non-zero, non-unit element in OK that has norm N((2, γ)) = 2, but if
a + bγ is a non-zero, non-unit in OK then N(a + bγ) = (a + b

2
)2 + 23( b

2
)2 > 2. Further

observe that γ2 = γ − 6, so we get that

p2 = (4, γ2, 2γ) = (4, γ − 6, 2γ) = (4, γ + 2, 2γ) = (4, γ + 2)

and that

p3 = (4, γ + 2)(2, γ) = (8, 4γ, 2γ + 4, γ2 + 2γ) = (8, 2γ + 4, γ2 + 2γ) = (8, 2γ + 4, 3γ − 6)

= (8, 2γ − 4, 3γ − 6) = (8, 2(γ − 2), 3(γ − 2), (3γ − 6)− (2γ − 4)) = (8, γ − 2)

= (8, γ − 2, (γ − 2)(γ − 3)) = (8, γ − 2, 4γ) = (γ − 2)

1



Furthermore, pg = (6, 2γ, 3γ, γ2) = (6, 2γ, 3γ, γ − 6) = (6, γ) = (γ(1 − γ), γ) = (γ) and
consequently we have that in the classgroup [p]3 = [1], [q] = [g] = [p]2 and [h] = [p]. Thus
the class group is generated by the representative of p and has order 3.

Solution 3.

Let K be a number field, OK its ring of integers. Let h denote the class number of OK .
We know that h is finite, so we may pick a finite set of ideal representatives a1, . . . , ah

for the class group, where each ai is an integral ideal in OK (cf. Theorem 4.3 in Milne).
It suffices to find L|K such that each aiOL is principal as for any other ideal b ⊆ OK we
have that b = ai(yi) for some yi ∈ K and consequently if aOL is principal then so must
bOL.

Note that as h is the order of the group, we have that for each i, ah
i = (xi) for

some xi ∈ OK (note that xi ∈ OK as we picked ai to be integral). Now as xi ∈ OK

we have that xi is integral over Z, but x
1
h
i is integral over OK so by ‘transitivity of

integrality’ x
1
h
i is integral over Z. We claim that L = K(x

1
h
1 , . . . , x

1
h
h ) is the required

extension. Let OL denote the ring of integers of L. Note that from our remarks above

each x
1
h
i ∈ OL, furthermore we have that ah

i = (xi) which implies that working in OL we

have ah
i OL = (x

1
h
i )hOL, now using unique factorization of fractional ideals of OL it easily

follows that (aOL = (x
1
h
i )OL, as required. (To see the last equality take any fractional

prime ideal dividing ai then this prime ideal must divide (x
1
h
i )h so it must divide (x

1
h
i ).

Conversely any prime ideal that divides (x
1
h
i ) must by the same argument also divide

ai.)

Solution 4.

(a) Let K = Q(i,
√

5) and OK be the ring of integers of K. Let L = Q(
√
−5) and M =

Q(i) with their ring of integers being OL = Z[
√
−5] and OM = Z[i] respectively.

From HW 7 we know that the only prime ideals from Z that ramify in OK are (2) and
(5). From this it follows that the only prime ideals in OL that may possibly ramify in
OK are those that occur in the factorization of (2) and (5) in OL (because if a prime
ideal from OL ramified in OK then all the primes in Z that it lies over must also
ramify). Factorizing in OL we have that, (2) = (2, 1 +

√
−5)2 and (5) = (5,

√
−5)2

(both factorizations were obtained by looking at x2 + 5 modulo 2 and 5). To prove
the required assertion it thus suffices to show that in the factorization of (2) and
(5) in OK no ideal factor occurs to a fourth or higher power (as then (2, 1 +

√
−5)

and (5,
√
−5) cannot possibly ramify in OK). Observe that in OM , (2) = (2, 1 + i)2

and that (5) = (5, i + 2)(5, i− 2) (these factorizations were obtained by looking at
x2 + 1 modulo 2 and 5).

Note that (5, i + 2) 6= (5, i − 2) as otherwise i − 2 ∈ (5, i + 2) which implies that
(5, i+2) = (5, i−2) = OM , which is absurd. Observe that K is a degree 2 extension
over M , thus by Theorem 3.36 in Milne, working in OK , (5, i + 2) may factor into
at most two prime factors (not neccessarily distinct, in fact it is easy to see that

2



they wont be distinct). Similarly (5, i− 2) may also have at most two prime factors
in OK . The sets of prime factors of (5, i + 2) and (5, i − 2) must be disjoint (as
otherwise the common factor would contain 5, i+2, i−2 and following the same line
of reasoning as earlier, would consequently have to be all of OK). Thus, we have
just shown that in the factorization of (5) in OK no factor shows up to a fourth or
higher power.

To obtain the required result for (2), observe that it suffices to show that (2, 1 + i)

doesn’t ramify in OK . Note that γ = 1+
√

5
2

has minimal polynomial x2 − x − 1
and thus γ ∈ OK . Observe that (by proposition 2.25 in Milne) Disc(OM(γ)/OM)

is the ideal generated by

∣∣∣∣∣ 1 1+
√

5
2

1 1−
√

5
2

∣∣∣∣∣
2

= 5. Consequently by lemma 2.22 in Milne,

Disc(OK/OM) divides (5) as ideals in OM (in fact it is easy to see that Disc(OK/OM) =
(5) and that consequently OK = Z[i, γ]). Clearly (2, 1+ i) doesn’t divide (5) in OM

(as otherwise (2, 1 + i) = OM). Thus, (by Theorem 3.37 in Milne) (2, 1 + i) doesn’t
ramify in OK , as required.

(b) Note that the class number of L = Q(
√
−5) is 2 thus we know that the Hilbert

class field of L is a degree 2 extension over L. However, K = Q(i,
√

5) is a degree
2 and clearly abelian extension of L, thus by the uniqueness of the Hilbert class
field, K must be the Hilbert class field of L. Now any other abelian unramified
extensions of L must be strictly contained in K and thus have degree less than 2
over L. Clearly, there is no such non trivial extension.
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