
Algebraic Number Theory Homework 8 Rahbar Virk

Solution 1.

Basis vectors over R3: {(5, 0, 0), (0, α + 3, 0), (0, 0, α2 + 1)}.

Note that the conjugates of α are αω and αω2 where ω is a primitive third root of
unity. Further observe that a lies over (5) so its norm must be either 5 or 25. But a also
lies over (α + 3) which has norm (α + 3)(αω + 3)(αω2 + 3) = 30, thus N(a) = 5.

Using Maple we have that Disc(OK) = −243. The negative discriminant shows that
r = s = 1 (since the sign of the discriminant is (−1)s). Now

V ol(σ(a)) = (2i)−s
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Solution 2.

(a) r = 3

S(7) = {~x ∈ R3 : ‖~x‖ = |x1|+ |x2|+ |x3| ≤ 7}
This is the volume of the space enclosed by a ‘double pyramid’. Consider just one
half of this space which is a pyramid of square base of area (7
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the volume should be 2r4−s(2π)s tn
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(b) r = s = 1

S(7) = {~x ∈ R× C : ‖~x‖ = |x1|+ 2
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The volume enclosed by this space is equivalent to evaluating the integral
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Our theorem tells us that the volume should be 2r4−s(2π)s tn
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hence verified.
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Now note that 73π
6
≈ 179.6 and 23 45
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2
≈ 311.8. So V ol(S(7)) 6≥ 23V ol(σ(a)) and

hence S(7) is not large enough to ensure that it contains a point of the lattice σ(a).
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