Solution 1.

Basis vectors over $\mathbb{R}^{3}:\left\{(5,0,0),(0, \alpha+3,0),\left(0,0, \alpha^{2}+1\right)\right\}$.
Note that the conjugates of α are $\alpha \omega$ and $\alpha \omega^{2}$ where ω is a primitive third root of unity. Further observe that \mathfrak{a} lies over (5) so its norm must be either 5 or 25 . But \mathfrak{a} also lies over $(\alpha+3)$ which has norm $(\alpha+3)(\alpha \omega+3)\left(\alpha \omega^{2}+3\right)=30$, thus $N(\mathfrak{a})=5$.

Using Maple we have that $\operatorname{Disc}\left(O_{K}\right)=-243$. The negative discriminant shows that $r=s=1$ (since the sign of the discriminant is $\left.(-1)^{s}\right)$. Now

$$
\operatorname{Vol}(\sigma(\mathfrak{a}))=(2 i)^{-s}\left|\begin{array}{ccc}
5 & \alpha+3 & \alpha^{2}+1 \\
5 & \alpha \omega+3 & \alpha^{2} \omega+1 \\
5 & \alpha \omega^{2}+3 & \alpha^{2} \omega^{2}+1
\end{array}\right|=\frac{1}{2 i} 45 \sqrt{3} i=\frac{45 \sqrt{3}}{2}
$$

And our theorem tells us that $\operatorname{Vol}(\sigma(\mathfrak{a}))=2^{-s} \mathrm{Na}\left|\Delta_{K}\right|^{\frac{1}{2}}=\frac{1}{2} 5|-243|^{\frac{1}{2}}=\frac{45 \sqrt{3}}{2}$, hence verified.

Solution 2.
(a) $r=3$

$$
S(7)=\left\{\vec{x} \in \mathbb{R}^{3}:\|\vec{x}\|=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \leq 7\right\}
$$

This is the volume of the space enclosed by a 'double pyramid'. Consider just one half of this space which is a pyramid of square base of area $(7 \sqrt{2})^{2}$ and height 7 . Thus the total volume of $S(7)$ is $2\left(\frac{1}{3} \cdot 7 \cdot(7 \sqrt{2})^{2}\right)=\frac{2^{2} \cdot 7^{3}}{3}$. Our theorem tells us that the volume should be $2^{r} 4^{-s}(2 \pi)^{s} \frac{t^{n}}{n!}=2^{3}$.1.1. $\frac{7^{3}}{3!}=\frac{2^{2} \cdot 7^{3}}{3}$, hence verified.
(b) $r=s=1$

$$
S(7)=\left\{\vec{x} \in \mathbb{R} \times \mathbb{C}:\|\vec{x}\|=\left|x_{1}\right|+2 \sqrt{x_{2}^{2}+x_{3}^{2}} \leq 7\right.
$$

The volume enclosed by this space is equivalent to evaluating the integral

$$
2 \iint_{D} 7-2 \sqrt{x_{2}^{2}+x_{3}^{2}} d A
$$

where D is the region $x_{2}^{2}+x_{3}^{2} \leq \frac{49}{4}$. Switching to polar coordinates we obtain

$$
2 \int_{0}^{2 \pi} \int_{0}^{\frac{7}{2}}(7-2 r) r d r d \theta=\frac{7^{3} \pi}{6}
$$

Our theorem tells us that the volume should be $2^{r} 4^{-s}(2 \pi)^{s} \frac{t^{n}}{n!}=\frac{2}{4} \cdot(2 \pi) \frac{7^{3}}{3!}=\frac{7^{3} \pi}{6}$, hence verified.

Now note that $\frac{7^{3} \pi}{6} \approx 179.6$ and $2^{3} \frac{45 \sqrt{3}}{2} \approx 311.8$. So $\operatorname{Vol}(S(7)) \nsupseteq 2^{3} \operatorname{Vol}(\sigma(\mathfrak{a}))$ and hence $S(7)$ is not large enough to ensure that it contains a point of the lattice $\sigma(\mathfrak{a})$.

