
Midterm Solutions, Part 1

Problem 1. Consider the complex-valued functions

f(z) = x3 + i y3, g(z) =
x− i y

x2 + y2
.

(a) Give the definition of complex differentiability for complex functions. How do the Cauchy-Riemann
equations relate to complex differentiability?

A complex function f : U → C is complex differentiable at z0 if the (complex) limit

f ′(z0) := lim
h→0

f(z0 + h)− f(z0)
h

exists and is finite.
The Cauchy-Riemann equations for a complex function f = u + i v are

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

It relates to complex differentiability via the following theorem: a complex function f is complex differen-
tiable at z0 if and only if it is real differentiable at z0 and satisfies the Cauchy-Riemann equations there.

(b) Show that f is differentiable at z = 1 + i. At what other points is f is C-differentiable?
Taking partial derivatives with u(x, y) = x3 and v(x, y) = y3, we find

∂u

∂x
= 3x2,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= 3y2.

Thus, f is C1. Moreover, the CR equations hold provided 3x2 = 3y2, or x2 = y2. This means f is holomor-
phic on the lines y = ±x. In particular, f is holomorphic at z = 1 + i, since it’s on the line y = x.

(c) Show that g is differentiable at z = 1 + i. At what other points is g is C-differentiable?
Observe that

1
z

=
z

|z|2 =
x− i y

x2 + y2
= g(z).

Thus, g is the quotient of two polynomials (which are holomorphic on C), and so g is differentiable whenever
the denominator is nonzero. Thus, g is differentiable for all z 6= 0, and in particular at z = 1 + i.

(d) Calculate f ′(1 + i) and g′(1 + i). What are the amplitwist effects of these derivatives, i.e. through what
angles are tangents rotated, and by what amplification factor?

Recall that if f is differentiable, then f ′ = ux + i vx. Thus,

f ′(1 + i) =
∂u

∂x
(1 + i) + i

∂v

∂x
(1 + i) = 3(1)2 + i 0 = 3.

Since 3 = 3 ei0 in polar form, the infinitesimal amplitwist of f at 1 + i is a dilation by a factor of 3 with no
rotation.

On the other hand, by the quotient rule,

g′(z) = − 1
z2

=⇒ g′(1 + i) = − 1
(1 + i)2

= − 1
2i

=
i

2
.

Since i/2 = 1
2 ei π/2 in polar form, the infinitesimal amplitwist of g at 1 + i is a contraction by a factor of

1/2 and a rotation 90◦ counterclockwise.



Problem 2. (a) State Cauchy’s Integral Theorem.
Suppose U ⊂ C is a simply connected open set and f : U → C is complex differentiable. Then

∫

γ

f(z) dz = 0

for every closed curve γ in U .

(b) State and prove Goursat’s Theorem in detail.
See the webpage’s Downloads link for the complete proof.

(c) State and sketch the proof of the homotopy version of Cauchy’s Integral Theorem.
The homotopy version states the following: Suppose γ and η are two positively oriented Jordan curves,

with η ⊂ inside(γ). If f is C-differentiable on the region between the curves, i.e. f is C-differentiable at
every point on γ, η, and the set inside(γ) ∩ outside(η), then

∫

γ

f(z) dz =
∫

η

f(z) dz.

As proof, suppose we have the setup shown below, with γ and η oriented positively (counterclockwise).
Connect γ and η by two different lines, say L1 and L2. Suppose both are oriented from γ to η (outside to
inside), and that we subdivide γ into γ1, γ2 and η into η1, η2 as indicated.

Γ

Η

Γ1

Η1

Γ2

Η2

L1 L2

Then both σ1 := γ1 + L1 − η1 − L2 and σ2 := γ2 + L2 − η2 − L1 are Jordan curves, and f is holomorphic
on a (simply connected) neighborhood of them. Hence, by the Cauchy Integral Formula,

∫
σj

f dz = 0 for
j = 1, 2. But then

0 =
∫

σ1

f(z) dz +
∫

σ2

f(z) dz =
∫

γ

f(z) dz −
∫

η

f(z) dz,

as desired.



Problem 3. Calculate the three line integrals below. You may use any of the Integral Theorems from class,
but be sure to state which you are using and why it is justified!

(a)
∫

L
z ez2

dz, where L is straight line from 0 to 1 + 2i.
The direct method is to parametrize L by z(t) = t(1 + 2i) for 0 ≤ t ≤ 1. Then

∫

L

z ez2
dz =

∫ 1

0

z(t) ez(t)2 z′(t) dt =
∫ 1

0

(1 + 2i)2t et2(1+2i)2 dt.

Under the substitution u = t2(1 + 2i)2, this becomes

∫

L

z ez2
dz =

∫ (1+2i)2

0

1
2
eu du =

1
2
(
e(1+2i)2 − 1

)
=

e−3+4i − 1
2

.

A faster method is to recognize that that 1
2ez2

is a complex antiderivative of z ez2
, whence the Funda-

mental Theorem implies

∫

L

z ez2
dz =

1
2
ez2

∣∣∣∣
1+2i

0

=
1
2
(
e(1+2i)2 − 1

)
=

e−3+4i − 1
2

.

(b)
∫

C
sin(z3)

z−i dz, where C is the positively-oriented circle {|z| = 4}.
This is a straightforward application of Cauchy’s Integral Formula. Since sin(z3) is everywhere-holomorphic,

the CIT implies

sin(i3) =
1

2πi

∫

C

sin(z3)
z − i

dz,

so
∫

C

sin(z3)
z − i

dz = 2πi sin(−i) = 2πi
ei(−i) − e−i(−i)

2i
= π(e− e−1).

(c)
∫

S
2z+1

z(z−1)3 dz, where S is the positively-oriented square with sides along the lines x = ±2 and y = ±2.
Observe that the integrand fails to be differentiable at z = 0 and z = 1. By the homotopy version of the

CIT, the integral over S is equivalent to the integral over two circles, centered at 0 and 1, each of radius 1/2.
Now, using the CIF again, we have

∫

|z|=1/2

2z + 1
z(z − 1)3

dz =
∫

|z|=1/2

2z+1
(z−1)3

z
dz = 2πi

2z + 1
(z − 1)3

∣∣∣∣
z=0

= −2πi,

while
∫

|z−1|=1/2

2z + 1
z(z − 1)3

dz =
∫

|z−1|=1/2

2z+1
z

(z − 1)3
dz =

2πi

2!
d2

dz2

{
2z + 1

z

}∣∣∣∣
z=1

= πi
2
z3

∣∣∣∣
z=1

= 2πi.

Thus
∫

S

2z + 1
z(z − 1)3

dz =
∫

|z|=1/2

2z + 1
z(z − 1)3

dz +
∫

|z−1|=1/2

2z + 1
z(z − 1)3

dz = −2π i + 2π i = 0.



Problem 4. Consider the real-valued function u(x, y) := x2 − y2 + x + 1.

(a) Give the definition of a harmonic function. How does this condition relate to complex differentiability?
A real-valued function u : U ⊂ R2 → R is harmonic if it is of class C2 and satisfies Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
≡ 0

on U .
Loosely speaking, harmonic functions are the real and/or imaginary parts of a holomorphic function.

More precisely, if f = u+ i v is holomorphic on U , then both u and v are harmonic on U . Conversely, if U is
simply connected and u is harmonic on U , then there exists a holomorphic function f on U such that u = Re f .

(b) Show that u is harmonic on C.
Note that u is a polynomial, so u is certainly C2. (In fact, it is C∞). As for Laplace’s equation, note

that

∂u

∂x
= 2x + 1,

∂2u

∂x2
= 2,

∂u

∂y
= −2y,

∂2u

∂y2
= −2,

so uxx + uyy = 2− 2 = 0, and u is harmonic.

(c) Find the harmonic conjugate v of u.
We seek a harmonic function v that satisfies the CR equations with u. Suppose v(x, y) is such a function.

Then

v(x, y) =
∫

∂v

∂x
dx =

∫
−∂u

∂y
dx =

∫
2y dx = 2xy + C(y).

But then

2x + C ′(y) =
∂v

∂y
=

∂u

∂x
= 2x + 1,

whence C ′(y) = 1, so (up to a constant) C(y) = y. Thus, we must have

v(x, y) = 2xy + y.

Since this is easily seen to be harmonic (indeed, vxx = vyy = 0), this is a harmonic conjugate to u.

(d) Explain why the function h(x, y) = 1
2 ln(x2 + y2) has no harmonic conjugate on C \ {0}.

To show this is impossible, assume to the contrary a conjugate v(z) does exists on C\{0}. For convenience,
let use denote by C∗ the punctured plane C \ {0} and by CC denote the cut-domain C \ {negative axis}.

On one hand, since v is a harmonic conjugate, the function f(z) := u(z)+i v(z) is defined and holomorphic
on C∗. On the other hand, the principal branch Log(z) = ln(|z|) + i argp(z) is defined and holomorphic on
CC , and its real part agrees with u. Thus, the function

z 7→ f(z)− Log(z)

is holomorphic on CC and takes on purely imaginary values. This implies it is a constant, whence

Log(z) ≡ f(z)− iK, ∀ z ∈ CC

for some constant K. But since f is holomorphic on C∗, this implies we can define the principal branch of
the logarithm to be holomorphic on C∗ as well; however, we know that the principal branch of the logarithm
is necessarily discontinuous at any negative real number. This contradiction implies no harmonic conjugate
v can exist on C∗.



Problem 5. Choose one of the following theorems below and (a) state the result and give a detailed, complete
proof, (b) discuss the relevance of the result in complex analysis, and (c) give at least one useful application
of the result.

• The equivalence of C-diff and the Cauchy-Riemann equations
• The existence of complex antiderivatives (the FTC part II)
• The Cauchy Estimates & Liouville’s Theorem

See the webpage’s Downloads link for complete proofs of the various theorems. As for relevance and
application:

• Equivalence. The revelance is in relating a purely complex condition to two purely real conditions.
This allows us to determine differentiability not by going to the complex limit (hard), but by instead
calculating partial derivatives (easy) and verifying the CR equations (easy).

• FTC Part II. The relevance is two-fold. First, it extends the real FTC to the complex realm, giving
a means to calculate antiderivatives. Second, it illustrates an important difference between the real
and complex cases: in the real world, continuity is sufficient to guarantee an antiderivative, but not
in the complex world. As applications, it allows for the quick evaluation of line integrals if a suitable
antiderivative can be easily found.

• Cauchy estimates & Liouville’s Theorem. The revelance of the estimates and Liouville’s Theorem is
that they are uniqueness results: they help give conditions useful in restricting the space of holo-
morphic functions. An application of the pair is the Fundamental Theorem of Algebra, which is an
almost immediate consequence of Liouville’s Theorem, which is itself an immediate consequence of the
Estimates.


