Midterm Part 2, Problem 5

Here is a second solution for Problem 5, Part (a), which was suggested by an idea from RV.

Problem 5, part (a)

Calculate [, 5=% dz, where S is the left half of the semicircle {|z+1] = 1} from —1 = i to 1+i.
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Antiderivative solution. This is essentially the version that appears in the online
solutions, slightly rewritten.
Observe that using partial fractions, we can rewrite the integrand as
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Consider the branch of the logarithm defined by cutting out the positive real axis, i.e.

log(z) :=In|z| + i arg(2), 0 < arg(z) < 2.

Observe that if z € S, then z — 1 lies on a left-handed semicircle centered at —2, whereas
z + 1 lies on a left-handed semicircle centered at 0. (See below.)

In either case, z £ 1 does not cross the branch cut of the positive axis, so these values lie in
the domain of our logarithm.

Now, observe that log(z + 1) is therefore a well-defined antiderivative of (2 +1)7! on a
neighborhood of S, whence the Fundamental Theorem implies
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Similarly, log(z—1) is therefore a well-defined antiderivative of (z—1)~! on a neighborhood
of S, whence the Fundamental Theorem implies
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(See the figure below for the geometry of these numbers.)
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Parametrization solution. Again we write
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For the first integral, let us parametrize S by the path
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Observe, however, that this parametrizes the curve in the wrong direction. Thus,
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For the second integral, consider not the semicircle S but the arc T" of the circle centered
at 1 passing through the points —1 4+ ¢ and —1 — .
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Since (z —1)~! is holomorphic on the region between S and T, the Cauchy Integral Theorem
implies that the integrals over S and T are the same. Now, we can parametrize T" by
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Again, this parametrizes T' in the wrong direction, whence
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Thus, as before,
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