
Complex antiderivatives and Goursat’s Theorem

Theorem. Suppose U is open and f : U → C is continuous. Then f possesses a complex
antiderivative on U if and only if

∫

∆
f dz = 0

for any triangular path ∆ in U .

Before getting to the proof, there is an immediate corollary:

Corollary. Suppose U is a simply-connected domain and f : U → C is complex differentiable.
Then f possesses a complex antiderivative on U .

Proof of corollary. If f is a C-differentiable function on a simply connected domain, then Cauchy’s
Theorem implies

∫
γ f dz = 0 for any closed curve γ, and in particular for triangular γ. 2

Proof of theorem. (=⇒) Suppose F ′(z) = f(z), and let γ be any smooth curve from in U a point
α to a point β. If we parametrize γ by z = z(t) with a ≤ t ≤ b, then by the real Fundamental
Theorem of Calculus (FTC), appliyed to the real and imaginary parts of the integral, we have

∫

γ
f dz =

∫ b

a
f
(
z(t)

)
z′(t) dt =

∫ b

a
F ′(z(t)

)
z′(t) dt

=
∫ b

a

d

dt

{
F

(
z(t)

)}
dt = F

(
z(b)

)− F
(
z(a)

)
= F (β)− F (α).

This is a complex analogue of the first part of the real FTC.
In particular, if ∆ = [z1, z2, z3, z1], then

∫

∆
f dz =

∫

[z1,z2]

f dz +
∫

[z2,z3]

f dz +
∫

[z3,z1]

f dz

=
(
F (z2)− F (z1)

)
+

(
F (z3)− F (z2)

)
+

(
F (z1)− F (z3)

)
= 0.

(⇐=) Assume U is simply connected, and fix a z0 ∈ U . Define F : U → C by

F (z) :=
∫

P [z0,z]

f(ζ) dζ,

where P [z0, z] is any polygonal path connecting z0 to z.
Observe that F is well-defined. Since U is open and connected, it is polygonally arcwise con-

nected, so a polygonal path γ from z0 to z exists. Moreover, if η is another such path, then γ − η
is a closed polygonal path. Since such a path can be decomposed as a sum of triangular paths, we
conclude

0 =
∫

γ−η

f(ζ) dζ =
∫

γ
f(ζ) dζ −

∫

η
f(ζ) dζ.

Hence, the two lines integrals over γ and η agree.



It remains to show that F is an antiderivative of f , i.e. that

lim
h→0

F (z + h)− F (z)
h

= f(z) ∀ z ∈ U.

Fix z, and let ε > 0. Since U is open, there exits an r > 0 such that B(z, r) ⊂ U . Moreover, since
f is continuous at z, there exists 0 < δ < r such that

|w − z| < δ =⇒ ∣∣f(w)− f(z)
∣∣ < ε.

Now, fix a polygonal path γ from ζ to z. If 0 < |h| < r, then z+h ∈ B(z, r), and so γ+[z, z+h]
is a polygonal path from ζ to z + h. Hence,

F (z + h)− F (z)
h

=
1
h




∫

γ+[z,z+h]

f(ζ) dζ −
∫

γ
f(ζ) dζ


 =

1
h

∫

[z,z+h]

f(ζ) dζ.

On the other hand, using the first half of this theorem, since 1 has the antiderivative ζ,

∫

[z,z+h]

1 dζ = ζ

∣∣∣∣
z+h

z

= (z + h)− z = h,

whence

F (z + h)− F (z)
h

− f(z) =
1
h

∫

[z,z+h]

f(ζ) dζ − f(z)


1

h

∫

[z,z+h]

1 dζ


 =

1
h

∫

[z,z+h]

f(ζ)− f(z) dζ.

Thus, if |h| < δ, then
∣∣∣∣
F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =
∣∣∣∣
1
h

∫

[z,z+h]

f(ζ)− f(z) dζ

∣∣∣∣ ≤
1
|h|

∫

[z,z+h]

∣∣f(ζ)− f(z)
∣∣ |dz|

<
1
|h|

∫

[z,z+h]

ε |dz| = 1
|h| · ε |h| = ε,

which completes the proof. 2


