LIMITS AND COLIMITS

R. VIRK

A useful property of adjoint functors is this: if a functor F^{\vee} has a left adjoint then F^{\vee} preserves limits (kernels, products, inverse limits). The aim of this note is to recall the definition of limits and colimits and provide a quick proof of this property.

Let I be a small category and let \mathcal{C} be any category. An I-shaped diagram in \mathcal{C} (or a diagram in \mathcal{C} indexed by I) is a functor $D: I \to \mathcal{C}$. A morphism $D \to D'$ of I-shaped diagrams is a natural transformation, and we have the category \mathcal{C}^I of I-shaped diagrams in \mathcal{C} . Any object X of \mathcal{C} determines the constant diagram \underline{X} that sends each object of I to X and sends each morphism of I to id_X . A *cone* of an I-shaped diagram D is an object X of \mathcal{C} together with a morphism of diagrams $\iota: \underline{X} \to D$. The *limit*, $\varprojlim D$ is a universal (final) cone of D. That is, if $f: \underline{Y} \to D$ is a cone of the diagram D, then there is a unique map $g: \underline{Y} \to \varprojlim D$ such that $f = \iota \circ g$, where $\iota: \varprojlim D \to D$ is the diagram morphism part of the data of the cone $\varprojlim D$.

The definition of limits subsumes several constructions useful in practical settings.

Example 0.1 (Products). If I is the discrete category on 2 points

• •

then limits indexed by I are products of two objects.

Example 0.2 (Kernels). Let I be the category with two objects and two parallel morphisms where one of the morphisms is a zero morphism

Example 0.3 (Inverse limits). Let I be a partially ordered set, considered as a category by adding arrows $a \to b$ if $a \ge b$. Then limits indexed by I are inverse limits.

The dual notion is that of *colimit* of a diagram D, denoted $\varinjlim D$. That is, a colimit is a universal cone (initial) of a diagram D. Applying the colimit construction to the above examples gives coproducts, cokernels and direct limits respectively.

Remark 0.4. A limit maps to all the objects in a big commutative diagram indexed by I. A colimit has a map from all the objects.

Theorem 0.5. If a functor $F^{\vee} : \mathcal{C} \to \mathcal{A}$ has a left adjoint, while the diagram $D : I \to \mathcal{C}$ has a limit $\iota : \underline{X} \to D$, then $F^{\vee}D$ has the limit $F^{\vee}\iota : \underline{F^{\vee}X} \to F^{\vee}D$ in \mathcal{A} .

R. VIRK

Proof. By composition $F^{\vee}\iota$ is a cone from the object $F^{\vee}X$ in \mathcal{A} . Suppose we have another cone $f: \underline{Y} \to F^{\vee}D$, then applying the adjunction isomorphism we obtain a cone $Fg: \underline{FY} \to D$ (note that FY is in \mathcal{C}). However, $\iota: X \to D$ is universal among cones to D, so there is a unique map $g: \underline{FY} \to \underline{X}$ with $\iota \circ g = Ff$. Applying the adjunction isomorphism to g gives a unique map $g^{\sharp}: \underline{Y} \to \underline{F^{\vee}X}$ with $(F^{\vee}\iota) \circ g^{\sharp} = f$. \Box

The dual of the theorem is equally useful: Any functor F which has a right adjoint must preserve colimits (coproducts, cokernels, direct limits).

Department of Mathematics, University of Wisconsin, Madison, WI 53706 E-mail address: wirk@math.wisc.edu