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Let A be a commutative ring (with 1). Let S ⊆ A be a multiplicative
set, i.e., 1 ∈ S and if x, y ∈ S, then xy ∈ S. Suppose f : A → B is a ring
homomorphism satisfying

(i) f(x) is a unit of B for all x ∈ S;
(ii) if g : A→ C is a ring homomorphism taking every element of S to

a unit of C, then there exist a unique homomorphism h : B → C
such that g = h ◦ f ;

then B is uniquely determined up to isomorphism, and is called the localiza-
tion of A with respect to S. We write B = S−1A and call f : A→ S−1A the
canonical map. We prove the existence of S−1A as follows: define a relation
∼ on the set A × S by (a, s) ∼ (b, s′) if and only if there exists t ∈ S such
that t(s′a − sb) = 0; it is easy to check that this is an equivalence relation
(if we just have s′a − sb = 0 in the definition, the transitive law fails when
S has zero divisors). We write a

s for the class of (a, s) and define sums and
products by the usual rules for calculating with fractions, i.e. a

s + b
s′ = as′+bs

ss′

and a
s

b
s′ = ab

ss′ . This makes B a ring and defining f : A → B by a 7→ a
1 we

see that f is a ring homomorphism satisfying the required properties. From
this construction we also see that kernel of the canonical map f : A→ S−1A
is given by ker(f) = {a ∈ A | sa = 0 for some s ∈ S}.

Example 0.1. Let p be a prime ideal of A. Then S = A− p is multiplica-
tively closed. We write Ap for S−1A in this case. The elements a

s , a ∈ p

form an ideal m in Ap. If b
t 6∈ m, then b 6∈ p, hence b ∈ S and therefore b

t is
a unit in Ap. Consequently, m is the unique maximal ideal in Ap.

Remark 0.2. A ring with a unique maximal ideal is called a local ring.

Example 0.3. Let f ∈ A, then S = {fn}n≥0 is multiplicatively closed. We
write Af for S−1A in this case.

The construction of S−1A can be carried through for an A-module M in
place of the ring A. Define an equivalence relation ∼ on M × S by:

(m, s) ∼ (m′, s′) ⇔ there exists t ∈ S such that t(s′m− sm′) = 0.

Let m
s denote the class of the pair (m, s), let S−1M denote the set of such

fractions made into a S−1A-modile with the obvious definitions of addition
and scalar multiplication. (Note that S−1M is also an A-module via the
canonical map A → S−1A.) As in the examples before, write Mp when
S = A− p and Mf when S = {fn}n≥0.
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The module S−1M satisfies the following universal property: suppose we
are given a map ϕ from M to an A-module N on which the elements of S
act by automorphisms. Then there is a unique map ϕ′ : S−1M → N such
that ϕ = ϕ′ ◦ ι.

Let ϕ : M → N be an A-module homomorphism. This gives rise to
an S−1A module homomorphism S−1ϕ : S−1M → S−1N , namely S−1ϕ

maps m
s to ϕ(m)

s . We have that S−1(ϕ ◦ ψ) = S−1(ϕ) ◦ S−1(ψ) and that
S−1idM = idS−1M . Thus, localization give a functor from the category of
A-modules to the category of S−1A-modules.

Proposition 0.4. Localization is an exact functor. That is, if M ′ f−→M
g−→M ′′

is exact at M , then

S−1M ′ S−1f
// S−1M

S−1g
// M ′′

is exact at S−1M .

Proof. We have that S−1g ◦ S−1f = S−1(f ◦ g) = 0. Hence, im (S−1f) ⊆
ker(S−1g). Conversely, suppose m

s ∈ ker(S−1g). Then tg(m) = g(tm) = 0
for some t ∈ S. So tm ∈ ker g, hence tm = f(m′) for some m′ ∈ M ′.
Thus, in S−1M we have m

s = f(m′)
st = (S−1f)(m′

st ) ∈ im (S−1f). Hence
ker(S−1g) ⊆ im (S−1f). �

Proposition 0.5. Let M be an A-module. Then the S−1A modules S−1M
and S−1A ⊗A M are isomorphic; more precisely this isomorphism is given
by the map

f : S−1A⊗A M → S−1M,
a

s
⊗m 7→ am

s
.

Proof. The map S−1A ×M → S−1M is A-bilinear induces the map f and
is clearly surjective.

Let
∑

i
ai
si
⊗mi be any element of S−1A ⊗A M . Then setting s =

∏
i si

and ti =
∏

j 6=i si we have that∑
i

ai

si
⊗mi =

∑
i

aiti
s
⊗mi =

∑
i

1
s
⊗ aitimi.

Thus, every element of S−1A ⊗A M can be written in the form 1
s ⊗ m.

Suppose f(1
s ⊗m) = 0, then m

s = 0, i.e. tm = 0 for some t ∈ S. Thus,

1
s
⊗m =

t

st
⊗m =

1
st
⊗ tm = 0.

Hence, f is injective and an isomorphism. �

Proposition 0.6. Let M be an A-module, and let m ∈ M . Then the fol-
lowing are equivalent:

(i) m = 0;
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(ii) m
1 = 0 in Mp for each prime ideal p of A;

(iii) m
1 = 0 in Mm for each maximal ideal m of A;

Proof. It is clear that (i)⇒(ii)⇒(iii). To see that (iii)⇒(i), let m ∈ M be
such that m

1 = 0 in Mm for each maximal ideal m of A. Suppose Ann (m) 6=
A, let m′ be a maximal ideal containing Ann (m). Then we have that sm = 0
for some s ∈ A − Ann (m), which is a contradiction. Thus, Ann (m) = A
and m = 0. �

Corollary 0.7. Let M be an A-module. Then the following are equivalent:
(i) M = 0;
(ii) Mp = 0 for each prime ideal p of A;
(iii) Mm = 0 for each maximal ideal m of A.

Proposition 0.8. Let ϕ : M → N be an A-module homomorphism. Then
the following are equivalent:

(i) ϕ is injective;
(ii) ϕp : Mp → Np is injective for each prime ideal p of A;
(iii) ϕm : Mm → Nm is injective for each maximal ideal m of A.

Similarly with ‘injective’ replaced by ‘surjective’ throughout.

Proof. From 0.4 we have that (i)⇒(ii), (ii)⇒(iii) is clear. To see (iii)⇒(i),
let M ′ = kerϕ. Then 0 →M ′ →M → N is exact, hence 0 →M ′

m →Mm →
Nm is exact by 0.4. Thus, M ′

m ' kerϕm = 0 since ϕm is injective. Hence,
M ′ = 0 by the previous corollary and ϕ is injective.

The proof with ‘injective’ replaced by ‘surjective’ is similar. �
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