LOCALIZATION

R. VIRK

Let A be a commutative ring (with 1). Let S C A be a multiplicative
set, i.e., 1 € S and if x,y € S, then xy € S. Suppose f : A — B is a ring
homomorphism satisfying

(i) f(z) is a unit of B for all x € S,
(i) if g : A — C is a ring homomorphism taking every element of S to
a unit of C, then there exist a unique homomorphism h : B — C
such that g = ho f;
then B is uniquely determined up to isomorphism, and is called the localiza-
tion of A with respect to S. We write B = S"!A and call f: A — S~!A the
canonical map. We prove the existence of S™'A as follows: define a relation
~ on the set A x S by (a,s) ~ (b,s') if and only if there exists ¢ € S such
that t(s'a — sb) = 0; it is easy to check that this is an equivalence relation
(if we just have s'a — sb = 0 in the definition, the transitive law fails when
S has zero divisors). We write ¢ for the class of (a,s) and define sums and

products by the usual rules for calculating with fractions, i.e. ¢+ 4 = as'+bs
SS

S S
and %g = g—g. This makes B a ring and defining f : A — B by a — § we
see that f is a ring homomorphism satisfying the required properties. From
this construction we also see that kernel of the canonical map f: A — S~1A4

is given by ker(f) = {a € A|sa = 0for some s € S}.

Example 0.1. Let p be a prime ideal of A. Then S = A — p is multiplica-
tively closed. We write Ay, for S7'A in this case. The elements S,a€p
form an ideal m in A,. If % Z m, then b & p, hence b € S and therefore % is
a unit in A,. Consequently, m is the unique maximal ideal in A.

Remark 0.2. A ring with a unique maximal ideal is called a local ring.

Example 0.3. Let f € A, then S = {f"},,>0 is multiplicatively closed. We
write Ay for S~1A in this case.

The construction of S~!'A can be carried through for an A-module M in
place of the ring A. Define an equivalence relation ~ on M x S by:

(m,s) ~ (m',s') & there exists t € S such that t(s'm — sm’) = 0.

Let * denote the class of the pair (m,s), let S~1M denote the set of such
fractions made into a S~'A-modile with the obvious definitions of addition
and scalar multiplication. (Note that S~!M is also an A-module via the
canonical map A — S71A.) As in the examples before, write M, when
S=A- p and Mf when S = {fn}nzo.
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2 R. VIRK

The module S™1M satisfies the following universal property: suppose we
are given a map ¢ from M to an A-module N on which the elements of S
act by automorphisms. Then there is a unique map ¢’ : ST'M — N such
that o = ¢/ o .

Let ¢ : M — N be an A-module homomorphism. This gives rise to
an S™'A module homomorphism S~y : ST'M — SN, namely S~
maps  to @. We have that S~1(p o)) = S71(p) o S71(z)) and that
S~lidy; = idg-1,;. Thus, localization give a functor from the category of
A-modules to the category of S~!A-modules.

Proposition 0.4. Localization is an exact functor. That is, if ML
s exact at M, then

STif g
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is exact at ST M.

Proof. We have that S™1go S71f = S7!(f o g) = 0. Hence, im (S~1f) C
ker(S~1g). Conversely, suppose 2 € ker(S~'g). Then tg(m) = g(tm) = 0
for some t € S. So tm € kerg, hence tm = f(m’) for some m' € M’
Thus, in S™'M we have 2 = @ = (Sflf)(%,) € im(S71f). Hence

ker(S~lg) Cim (S71f). O

Proposition 0.5. Let M be an A-module. Then the S~'A modules S~ M
and STYA®4 M are isomorphic; more precisely this isomorphism is given
by the map
f:S " A@s M — STt M,
a am
—Q@m— —.
S s

Proof. The map S~™'A x M — S~'M is A-bilinear induces the map f and
is clearly surjective.

Let >, ¢+ ® m; be any element of S™1A®4 M. Then setting s = [[; s;
and t; = H#i s; we have that

a; a;t; 1
—l'®mi: E L ®@my = E ;®aitimi.
1 .
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Thus, every element of S™'A ®4 M can be written in the form % ® m.
Suppose f(% ®m) =0, then " =0, i.e. tm = 0 for some ¢ € S. Thus,

1 t 1
- m=—Q@m=—tm=020.
S st st
Hence, f is injective and an isomorphism. O

Proposition 0.6. Let M be an A-module, and let m € M. Then the fol-
lowing are equivalent:

(i) m=0;
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(i)

(i)
Proof. 1t is clear that (i)=(ii)=-(iii). To see that (iii)=(i), let m € M be
such that § = 0 in My, for each maximal ideal m of A. Suppose Ann (m) #
A, let m’ be a maximal ideal containing Ann (m). Then we have that sm = 0
for some s € A — Ann (m), which is a contradiction. Thus, Ann(m) = A
and m = 0. g

=0 in My, for each prime ideal p of A;

m
1
T =0 in My, for each maximal ideal m of A;

Corollary 0.7. Let M be an A-module. Then the following are equivalent:
(i) M =0;
(ii) My =0 for each prime ideal p of A;
(iii) Mm = 0 for each mazimal ideal m of A.

Proposition 0.8. Let ¢ : M — N be an A-module homomorphism. Then
the following are equivalent:
(i) ¢ is injective;
(ii) @p : My — Ny is injective for each prime ideal p of A;
(iii) ¢m : Mm — Ny is injective for each mazimal ideal m of A.
Similarly with ‘injective’ replaced by ‘surjective’ throughout.

Proof. From 0.4 we have that (i)=-(ii), (ii)=-(iii) is clear. To see (iii)=(i),
let M’ =ker p. Then 0 — M’ — M — N is exact, hence 0 — M/}, — My —
Ny is exact by 0.4. Thus, M/ ~ ker ¢, = 0 since ¢, is injective. Hence,
M’ = 0 by the previous corollary and ¢ is injective.

The proof with ‘injective’ replaced by ‘surjective’ is similar. ([
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