
ON THE CLEMENS-SCHMID EXACT SEQUENCE

R. VIRK

The Clemens-Schmid exact sequence [C] relates the complex geometry of a
semistable degeneration of varieties to that of a general fibre and the monodromy of
the degeneration. It is a well known tool for studying semistable degenerations.

Less widely known is that straightforward yoga with weights yields statements in
greater generality (eg., there is no need to restrict to the semistable situation). The
purpose of this note is to explain this via Theorem 3.11, Theorem 4.2 and Theorem
4.4. We use M. Saito’s mixed Hodge modules to talk about weights. The essence of
the argument is extracted from [D, Théorème 3.6.1] (also see [S88, Remark 5.2.2]).
In particular, no claims to originality are being made.

1. Preliminaries on mixed Hodge modules.

1.1. For a variety1 X , we write D(X ) for the bounded derived category of mixed
Hodge modules on X . We will mainly use formal properties of the standard functors
between these categories, and their interactions with weights, as explained in [S89].

1.2. Part of the data defining a mixed Hodge module M consists of a perverse sheaf
Mrat with Q-coefficients and a finite increasing filtration, the weight filtration, on
Mrat. Morphisms of mixed Hodge modules are strictly compatible with the weight
filtration. A mixed Hodge module is pure if its weight filtration is concentrated in a
single weight. An object M ∈ D(X ) is called pure of weight k if its n-th cohomology
module (corresponding to the n-th perverse cohomology of Mrat) is pure of weight
n+ k. A mixed Hodge module over a point is a polarizable Q-mixed Hodge structure
with the usual notion of weights/weight filtration from mixed Hodge theory.

1.3. Given a morphism of varieties f : X → Y , there are functors f∗, f!, f ∗, f !,⊠ that
lift their counterparts on the underlying derived categories of constructible sheaves.
(Note: functors on derived categories will always be derived. I.e., we write f∗ instead
of Rf∗, etc.). The functors f∗ and f ! do not lower weights, f! and f ∗ do not raise
weights, and ⊠ adds weights. In particular, if a : X → Spec(C) is proper and M ∈ D(X )
is pure of weight 0, then the cohomology module (i.e., Hodge structure):

Hk(X ; M) = Hk(a∗M)

is pure of weight k.
1‘Variety’ = ‘separated scheme of finite type over Spec(C)’.
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2. Standard exact sequences.

2.1. Let i : X0 → X be a closed immersion and j : X − X0 → X the inclusion of its
open complement. Then, for M ∈ D(X ), we have a canonical distinguished triangle:

i∗i
!M → M → j∗ j

∗M
[1]
−→

Applying i∗ yields the distinguished triangle:

i!M → i∗M → i∗ j∗ j
∗M

[1]
−→

Now taking ∗-pushforward along X0 → Spec(C) yields the long exact sequence of
mixed Hodge structures:

(2.1.1) · · · → Hk(X0; i!M)→ Hk(X0; i∗M)→ Hk(X0; i∗ j∗ j
∗M)→ ·· ·

2.2. Given a morphism f : X → A1, we set X0 = f −1(0) and X ∗ = X − X0. We write
i : X0→ X and j : X ∗→ X for the inclusions. We also have the nearby cycles functor
ψ f : D(X ) → D(X0) that lifts its counterpart on constructible sheaves. Our shift
convention is that ψ f [−1] is exact on mixed Hodge modules/perverse sheaves.

2.3. Write ψu
f for the unipotent part of ψ f . The log of the unipotent part of the

monodromy operator on nearby cycles yields a canonical map:

N : ψu
f (M)→ψ

u
f (M)(−1)

in D(X0). Here, M(−1) = M ⊠Q(−1), where Q(−1) is the one-dimensional Hodge
structure of type (1,1). This map fits into a canonical distinguished triangle (see
[S88, Remark 5.2.2]):

i∗ j∗ j
∗(M)→ψu

f (M)
N
−→ψu

f (M)(−1)
[1]
−→

which in turn yields a long exact sequence of mixed Hodge structures:

(2.3.1) · · · → Hk(X0; i∗ j∗ j
∗M)→ Hk(X0;ψu

f (M))
N
−→ Hk(X0;ψu

f (M))(−1)→ ·· ·

3. Weight considerations.

3.1. Let k ∈ Z. Given a nilpotent endomorphism N , of an object V in an abelian
category, there exists a unique finite increasing filtration V• of V , such that NVi ⊂ NVi−2

and such that N i induces an isomorphism: Grk+iV
∼
−→ Grk−iV . This is the monodromy

filtration of [D, 1.6] centered at k.

3.2. Let f : X → A1 be a proper morphism. If M ∈ D(X ) is pure of weight 0, then
the weight filtration on Hk(X0;ψu

f (M)) coincides with the monodromy filtration
determined by N and centered at k. In particular:

(i) ker(N : Hk(X0;ψu
f (M))→ Hk(X0;ψu

f (M))(−1)) has weights ≤ k;
(ii) coker(N : Hk(X0;ψu

f (M))→ Hk(X0;ψu
f (M))(−1)) has weights ≥ k+ 2.
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3.3. By (2.1.1) and (2.3.1) we have a diagram:

(3.3.1)

Hk(X0; i∗M)

��

Hk(X0; i∗ j∗ j
∗M)

��

// Hk(X0;ψu
f (M))

N
// Hk(X0;ψu

f (M))(−1)

Hk+1(X0; i!M)

where both the row and column are exact.

Proposition 3.4 (Local invariant cycles). Let M ∈ D(X ) be pure. If f : X → A1 is
proper, then the sequence:

Hk(X0; i∗M)→ Hk(X0;ψu
f (M))

N
−→ Hk(X0;ψu

f (M))(−1)

is exact for each k.

Proof. We may assume M is pure of weight 0. Then ker(N) has weights ≤ k by
§3.2(i). Consequently, by the exactness of the row in (3.3.1), it suffices to show
Hk(X0; i∗M) → Hk(X0; i∗ j∗ j

∗M) is surjective on weights ≤ k. As i! does not lower
weights, Hk+1(X0; i!M) has weights ≥ k+ 1. In view of the exactness of the column
in (3.3.1), this yields the desired surjectivity.

3.5. From (2.1.1) and (2.3.1) we also have a diagram:

(3.5.1)

Hk+1(X0; i∗M)

��

Hk(X0;ψu
f (M))

N
// Hk(X0;ψu

f (M))(−1) // Hk+1(X0; i∗ j∗ j
∗M)

��

Hk+2(X0; i!M)

where both the row and column are exact.

Proposition 3.6. Let M ∈ D(X ) be pure. If f : X → A1 is proper, then:

Hk(X0;ψu
f (M))

N
−→ Hk(X0;ψu

f (M))(−1)→ Hk+2(X0; i!M)

is exact for each k.

Proof. We may assume M is pure of weight 0. Then coker(N) has weights ≥ k + 2

by §3.2(ii). Consequently, by the exactness of the row in (3.5.1), it suffices to show
Hk+1(X0; i∗ j∗ j

∗M) → Hk+2(X0; i!M) is injective on weights ≥ k + 2. As i∗ does not
raise weights, Hk+1(X0; i∗M) has weights ≤ k + 1. In view of the exactness of the
column in (3.5.1), this yields the desired injectivity.
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3.7. Next, from (2.1.1) and (2.3.1) once again, we have the diagram:

(3.7.1)

Hk(X0;ψu
f (M))(−1) // Hk+1(X0; i∗ j∗ j

∗M) //

��

Hk+1(X0;ψu
f (M)

N
//

Hk+2(X0; i!M)

��

Hk+2(X0; i∗M)

where both the row and column are exact.

Proposition 3.8. Let M ∈ D(X ) be pure. If f is proper, then:

Hk(X0;ψu
f (M))(−1)→ Hk+2(X0; i!M)→ Hk+2(X0; i∗M)

is exact for each k.

Proof. We may assume M is pure of weight 0. Then Hk+2(X0; i!M) has weights
≥ k+ 2. Consequently, by the exactness of the column in (3.7.1), it suffices to show
Hk(X0;ψu

f (M))(−1)→ Hk+1(X0; i∗ j∗ j
∗M) is surjective on weights ≥ k+ 2. By §3.2(i),

ker(N) has weights ≤ k + 1. Hence, by the exactness of the row in (3.7.1), the
map Hk+1(X0; i∗ j∗ j

∗M)→ Hk+1(X0;ψu
f (M)) must be 0 on weights ≥ k + 2. So row

exactness of (3.7.1) yields the desired surjectivity.

3.9. Finally, using (2.1.1) and (2.3.1) (one last time), we have the diagram:

(3.9.1)

N
��

Hk−1(X0;ψu
f (M))(−1)

��

Hk(X0; i!M) // Hk(X0; i∗M) // Hk(X0; i∗ j∗ j
∗M)

��

Hk(X0;ψu
f (M))

where both the row and column are exact.

Proposition 3.10. Let M ∈ D(X ) be pure. If f is proper, then:

Hk(X0; i!M)→ Hk(X0; i∗M)→ Hk(X0;ψu
f (M))

is exact for each k.

Proof. We may assume M is pure of weight 0. Then Hk(X0; i∗M) has weights ≤
k. Consequently, by the exactness of the row in (3.9.1), it suffices to show that



ON THE CLEMENS-SCHMID EXACT SEQUENCE 5

Hk(X0; i∗ j∗ j
∗M)→ Hk(X0;ψu

f (M)) is injective on weights ≤ k. By §3.2(ii),

coker(N : Hk−1(X0;ψu
f (M))→ Hk−1(X0;ψu

f (M))(−1))

has weights ≥ k+1. So column exactness of (3.9.1) yields the desired injectivity.

Theorem 3.11 (Generalized Clemens-Schmid). Let M ∈ D(X ) be pure. If f : X → A1

is proper, then we have (two) long exact sequences:

· · · → Hk(X0, i∗M)→ Hk(X0;ψu
f (M))

N
−→ Hk(X0;ψu

f (M))(−1)→ Hk+2(X0; i!M)→ ·· ·

Proof. This is just Propositions 3.4, 3.6, 3.8 and 3.10 stated in combined form.

4. Applications.

4.1. Let a : X → Spec(C) be the evidentmap. LetQ denote the trivial one-dimensional
Hodge structure of weight 0. Then setting:

H∗(X ) = H∗(X ; a∗Q),

H∗X0
(X ) = H∗(X ; i!a∗Q),

yields canonical mixed Hodge structures on the usual cohomology groups (with
Q-coefficients) on the left. Similarly, set:

H∗(X∞) = H∗(X0;ψ f (a
∗Q)).

Then H∗(X∞) is the limit Hodge structure associated to f : X → A1. If f is proper, then
forgetting Hodge structures, H∗(X∞) is isomorphic to H∗( f −1(t)), for t sufficiently
close to 0. However, this is usually not an isomorphism of Hodge structures. Similarly,
if we let T be the monodromy operator on H∗(X∞), then T usually does not preserve
Hodge structures. However, T − id and N (the log of the unipotent part of T) have
the same kernel (monodromy invariants).

Theorem 4.2 (Local invariant cycles). Assume X is rationally smooth. If f : X → A1 is
proper, then for each k we have an exact sequence of mixed Hodge structures:

Hk−2
X0
(X )→ Hk(X0)→ Hk(X∞)

T → 0,

where (−)T denotes monodromy invariants.

Proof. As X is rationally smooth, a∗Q is pure (ignoring cohomological degree, it is
an irreducible mixed Hodge module with underlying perverse sheaf the intersection
cohomology complex of X ). Thus, Theorem 3.11 (or Proposition 3.4) applies.

4.3. Using this recipe we may re-state Theorem 3.11 under various guises. Let’s just
close with the most straightforward one:
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Theorem 4.4 (Clemens-Schmid). Assume X is rationally smooth and that the mon-
odromy operator acts unipotently. If f : X → A1 is proper, then:

· · · → Hk(X0)→ Hk(X∞)
N
−→ Hk(X∞)(−1)→ Hk+2

X0
(X )→ ·· ·

is an exact sequence of mixed Hodge structures.

Proof. As X is rationally smooth, a∗Q is pure. Thus, Theorem 3.11 applies.
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