HODGE-GROTHENDIECK CLASSES AND MONODROMY INVARIANTS OF
NEARBY CYCLES SHEAVES

R. VIRK

This note was prompted by a question of G. Williamson [W] (paraphrasing): “How
much information about nearby cycles can we deduce without knowing the defining
function?”. The idea being that the associated graded of the monodromy filtration*
on (unipotent) nearby cycles is determined by its primitive part. The latter should be
completely determined by the central fibre.

We pursue this in the Hodge theoretic context. Theorem 4.2 shows that the Hodge-
Grothendieck class of (the unipotent part of) nearby cycles sheaves is independent
of the defining equation. Theorem 5.2 is a generalized local invariant cycles result (a
variant of [D, Théoreme 3.6.1]). No claims to orginality are being made.

1. Notation.

1.1. We write .#(X) for the category of mixed Hodge modules on a variety” X, and
2(X) for its bounded derived category. The cohomology functors associated to the
evident t-structure (with heart .# (X)) are denoted *H': 9(X) — #(X). The d-th
Tate twist will be denoted by (d). Functors on derived categories will always be
derived. Le., we write f, instead of Rf,, etc.

1.2. Let f: X — A! be a morphism of varieties. Set X, = f1(0) and X* = X —X,.
We write i: X, —» X and j: X* — X for the inclusions.

X —— X e—2 X

|

{0} — Al —— A'— {0}

The unipotent part of the nearby cycles functor associated to f is denoted:
P 2(X) > D(X)

Shift convention is that 1/)}[—1] is t-exact. We write:
Nt > epi(—1)

for the log of the unipotent part of monodromy.

In the sense of [D, 1.6].
2Variety’ = ‘separated scheme of finite type over Spec(C)'.
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2. Preliminaries.

2.1. For M € 2(X*) it is convenient to set:
PUR(M) = (i M)[-1].

In particular, ? \11}1 restricts to a t-exact functor .4 (X*) — #(X,).>

2.2. We have a canonical distinguished triangle (see [S88, Remark 5.2.2]):

1
(2.2.1) poron) S reony 1) - itm B

For M € .#(X*) this yields an exact sequence:
(2.2.2) 0 —PH(i*j,M) — PUL(M) X, PE(M)(-1) — PHO(i*j,M) — 0

Proposition 2.3. Let M € .#(X*). Let j,,(M) € #(X) be the intermediate extension
of M to X. Then we have canonical isomorphisms:

@ ker(N) =i, (M)[-1]

(i) coker(N)=1i'j, (M)[1]

Proof. We only show (i). The proof of (ii) is similar. Apply i* to the canonical
distinguished triangle:

L1 G (M) > (M) = 1,7 Gu()) 2

to get the distinguished triangle:

i1, (M) > i, (M) — .M 2

This yields the exact sequence:
PHTY(i' jy, (M) — PHH (i, (M) — PH (i*j,M) — PH(i'j,,(M)).

As i' is left t-exact, the left most term must vanish. Additionally, since j,.(M) is the
intermediate extension of M, the right most term must also vanish. In other words,
ker(N) ~PH~1(i*j,,(M)). On the other hand, PH*(i*j,,(M)) = 0 for k # —1. O

3. Weights.

3.1. Mixed Hodge modules come equipped with a finite increasing filtration (the
weight filtration) which we denote by W,. The associated graded is denoted Gr’.
Morphisms in . (X) are strictly compatible with W, [S89, 1.5].

3.2. An object M € 2(X) is said to have weights < n (resp. > n) if GrkWPHi(M) =0
for k > i+n (resp. k < i+n). The object M is called pure of weight n if Gr}Y PH'(M) = 0
for k #i+n.

30ur p\IJ)LJ is denoted v ; in [S89].
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3.3. Let M € #(X*). Then:
NWPWE(M) C Wy _oP &3 (M)(-1),
for each k. Additionally, if M is pure of weight n, then:

k. W
N™: Grn—1+k

PWH(M) = Gry_ PWR(M)(—k)
is an isomorphism for each k > 0 (see [S89, 1.19] and [D, 1.6]). Further, we have an

isomorphism:
Gr}' ker(N) ~ ker(N : GrZVPqJ;(M) - GrZV_ZPq/;(M)(—D).
Consequently, for M pure of weight n, we have an isomorphism:

(3-3.1) Gry/ PWE(M) = B ¥, ker(W)((n—1-m—k)/2)
m=|n—1-k|,

m=n—1—k (mod 2)

4. Hodge-Grothendieck classes.
4.1. Let Ky(X,) denote the Grothendieck group of 2(X,) (equivalently . (X,)).

Theorem 4.2. Let f,g: X — A' be morphisms of varieties. If f1(0);eq = & (0),eqs
then lpji and 1/)2 define the same map on Grothendieck groups. Le., in Ko(X,):

[y ()] = [ (M),

foreach M € 92(X)

Proof. It suffices to show [P\IJ}J(M =1 \I/}Oj(M )] for M € .#(X*). We may also assume
that M is pure of weight n. By Proposition 2.3(i) and (3.3.1):
reranl=> > (6 i M[-1](n—1—m—k)/2)]
k m=n—mlzklzli(kll1y10d 2)
= [P9(M)] O

Remark 4.3. If only the ordinary Grothendieck class of Y is of interest (i.e., working
with constructible sheaves as opposed to mixed Hodge modules), then Hodge theory
may be completely avoided as follows. Replace W, by the monodromy filtration
associated to N and argue exactly as above. The identity (3.3.1) holds. The only
extra ingredient needed in the proof of Theorem 4.2 is that the induced filtration on
i*j,.(M) is independent of f.* A purely topological demonstration of this is the main
result of [ELM].>

4This is the heart of the matter in the proof of Theorem 4.2. It is somewhat obscured by the expository
choice of not making it totally explicit that the monodromy filtration and weight filtration coincide.
5The point is that the monodromy filtration induced from nearby cycles coincides with that induced from
Verdier specialization. Verdier specialization does not depend on f.
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5. Invariant cycles.
5.1. The adjunction map M — j,j*M along with (2.2.1) yields canonical maps:
M 1, M = (M),

Theorem 5.2 (Local invariant cycles). Let M € 2(X) be pure. If f : X — Al is proper,
then the sequence of maps:

% u N u

H*(Xo; i*M) — H (Xo; 9% (M) — H*(Xo; 9§ (M))(—1)
is exact for each k.
Proof. Say M is pure of weight n. As pushforward along a proper map preserves
weights [S89, 1.8], the weight filtration on H*(X,; w; (M)) is the monodromy filtra-
tion® centered at n + k [S88, (5.3.4.2)], [S89, 1.19]. In particular, ker(N) has weights
< n+k. From (2.2.1) we infer that ker(N) is the image of:
H (Xo;i*j,j*M) — H*(Xo; 44 (M)).

Thus, it suffices to show H*(X,;i*M) — H*(X,;i*j,j*M) is surjective on weights
<n+k. The map i*M — i*j,j*M fits into a distinguished triangle:

1
i'M— i*M —i*j,j*M IEIN

This yields an exact sequence:
H*(Xo;i*M) — H*(X;1%j,j*M) — H" 1 (Xo; ' M).

As i' does not lower weights [S89, 1.7], the right most term has weights > n+k + 1.
Hence, H*(X,;i*M) — H*(X,;i*j,j*M) must be surjective on weights <n+k. [

Remark 5.3. If X is rationally smooth, then taking M to be the constant sheaf on X
(with trivial Hodge structure)’ recovers the classical local invariant cycles theorem.

Remark 5.4. Using an argument similar to the proof above, the exact sequence of
Theorem 5.2 may be extended to a generalized Clemens-Schmid exact sequence.
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%In the sense of [D, 1.6]

7More precisely, .# (Spec(C)) is the category of polarizable Q-mixed Hodge structures [S89, 1.4]. Let Q
be the trivial 1-dimensional, weight 0 Hodge structure. Let a: X — Spec(C) be the structure map. Take
M =a*Q".
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